Open Access. Powered by Scholars. Published by Universities.®

Biophysics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 184

Full-Text Articles in Biophysics

Coomassie Brilliant Blue Dye As A Method For Analyzing Fracture Markings In Bone, Abigail Hoffmeister, David Harutunyan, Matthew Aizawa, Everett Baker, Brandon Mendoza, Chase Freeman, Siran Iskanian Mar 2024

Coomassie Brilliant Blue Dye As A Method For Analyzing Fracture Markings In Bone, Abigail Hoffmeister, David Harutunyan, Matthew Aizawa, Everett Baker, Brandon Mendoza, Chase Freeman, Siran Iskanian

Seaver College Research And Scholarly Achievement Symposium

Coomassie Brilliant Blue Dye is a dye commonly used to stain proteins. Because of its ability to adhere to proteins, this research has focused on perfecting a method of dyeing a fractured flat bone in order to most accurately observe and analyze fracture markings within the trabecular layer. Stereoscopic microscopy was the chosen technique of analysis for this research because of its proven effectiveness in glass and ceramic fractography to observe varying depths. In order to most effectively apply stereoscopic microscopy to this research, the following variables were manipulated to maximize color contrast in the trabecular layer in order to …


Development Of An Integrated Workflow For Nucleosome Modeling And Simulations, Ran Sun Mar 2024

Development Of An Integrated Workflow For Nucleosome Modeling And Simulations, Ran Sun

Doctoral Dissertations

Nucleosomes are the building blocks of eukaryotic genomes and thus fundamental to to all genetic processes. Any protein or drug that binds DNA must either cooperate or compete with nucleosomes. Given that a nucleosome contains 147 base pairs of DNA, there are approximately 4^147 or 10^88 possible sequences for a single nucleosome. Exhaustive studies are not possible. However, genome wide association studies can identify individual nucleosomes of interest to a specific mechanism, and today's supercomputers enable comparative simulation studies of 10s to 100s of nucleosomes. The goal of this thesis is to develop and present and end-to-end workflow that serves …


Source Data For "Flowering Of Developable 2d Crystal Shapes In Closed, Fluid Membranes", Hao Wan, Geunwoong Jeon, Weiyue Xin, Gregory M. Grason, Maria M. Santore Jan 2024

Source Data For "Flowering Of Developable 2d Crystal Shapes In Closed, Fluid Membranes", Hao Wan, Geunwoong Jeon, Weiyue Xin, Gregory M. Grason, Maria M. Santore

Data and Datasets

Source data for "Flowering of Developable 2D Crystal Shapes in Closed, Fluid Membranes".


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Biomolecular Function From Structural Snapshots, Roshanak Etemadpour Dec 2023

Biomolecular Function From Structural Snapshots, Roshanak Etemadpour

Theses and Dissertations

Biological molecules can assume a continuous range of conformations during function. Near equilibrium, the Boltzmann relation connects a particular conformation's free energy to the conformation's occupation probability, thus giving rise to one or more energy landscapes. Biomolecular function proceeds along minimum-energy pathways on such landscapes. Consequently, a comprehensive understanding of biomolecular function often involves the determination of the free-energy landscapes and the identification of functionally relevant minimum-energy conformational paths on these landscapes. Specific techniques are necessary to determine continuous conformational spectra and identify functionally relevant conformational trajectories from a collection of raw single-particle snapshots from, e.g. cryogenic electron microscopy (cryo-EM) …


Langevin Dynamic Models For Smfret Dynamic Shift, David Frost, Keisha Cook Dr, Hugo Sanabria Dr Nov 2023

Langevin Dynamic Models For Smfret Dynamic Shift, David Frost, Keisha Cook Dr, Hugo Sanabria Dr

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Molecular Mechanisms Of Amyloid-Like Fibril Formation, Sharareh Jalali Aug 2023

Molecular Mechanisms Of Amyloid-Like Fibril Formation, Sharareh Jalali

Dissertations

Proteins play a critical role in living systems by performing most of the functions inside cells. The latter is determined by the protein's three-dimensional structure when it is folded in its native state. However, under pathological conditions, proteins can misfold and aggregate, accounting for the formation of highly ordered insoluble assemblies known as amyloid fibrils. These assemblies are associated with diseases like Parkinson's and Alzheimer's. Strong evidence suggests that three mechanisms are critical for forming amyloid fibrils. These mechanisms are the nucleation of amyloid fibrils in solution (primary nucleation) as well as on the surface of existing fibrils (secondary nucleation) …


Exploring Topological Phonons In Different Length Scales: Microtubules And Acoustic Metamaterials, Ssu-Ying Chen Aug 2023

Exploring Topological Phonons In Different Length Scales: Microtubules And Acoustic Metamaterials, Ssu-Ying Chen

Dissertations

The topological concepts of electronic states have been extended to phononic systems, leading to the prediction of topological phonons in a variety of materials. These phonons play a crucial role in determining material properties such as thermal conductivity, thermoelectricity, superconductivity, and specific heat. The objective of this dissertation is to investigate the role of topological phonons at different length scales.

Firstly, the acoustic resonator properties of tubulin proteins, which form microtubules, will be explored The microtubule has been proposed as an analog of a topological phononic insulator due to its unique properties. One key characteristic of topological materials is the …


Towards Clinical Microscopic Fractional Anisotropy Imaging, Nico Jj Arezza Aug 2023

Towards Clinical Microscopic Fractional Anisotropy Imaging, Nico Jj Arezza

Electronic Thesis and Dissertation Repository

Microscopic fractional anisotropy (µFA) is a diffusion-weighted magnetic resonance imaging (dMRI) metric that is sensitive to neuron microstructural features without being confounded by the orientation dispersion of axons and dendrites. µFA may potentially act as a surrogate biomarker for neurodegeneration, demyelination, and other pathological changes to neuron microstructure with greater specificity than other dMRI techniques that are sensitive to orientation dispersion, such as diffusion tensor imaging. As with many advanced imaging techniques, µFA is primarily used in research studies and has not seen use in clinical settings.

The primary goal of this Thesis was to assess the clinical viability of …


Exploring The Interaction Of Minor-Groove-Binder Netropsin With Dna Using Optical Tweezers, Irbazhusain Shaikh May 2023

Exploring The Interaction Of Minor-Groove-Binder Netropsin With Dna Using Optical Tweezers, Irbazhusain Shaikh

Honors Program Theses and Projects

Netropsin is an antibiotic that binds in the minor grooves of DNA, which also exhibits anticancer properties. There have been many previous studies that explored the binding of this drug to DNA using traditional methods where an ensemble averaging is used. In this study we explore the interaction of Netropsin with DNA at a single molecule level using dual beam optical tweezers. We trapped and stretched a single DNA molecule using optical tweezers to measure the force experienced by the DNA as a function of extension in the absence and presence of various concentrations of Netropsin. Our results show the …


Analysis Of The Electrostatic Characteristics Of The Zika Virus Capsid Using Computational Methods, Cassandra Guadalupe Del Rio De Avila May 2023

Analysis Of The Electrostatic Characteristics Of The Zika Virus Capsid Using Computational Methods, Cassandra Guadalupe Del Rio De Avila

Open Access Theses & Dissertations

Zika virus (ZIKV) is a flavivirus that is usually transmitted through the bite of infected mosquitoes. This virus can cause a variety of neurological disorders, the most common being Guillain-Barré syndrome in adults. Moreover, it is of great concern in pregnant women, since can cause deformities in the brain and other organs of newborns.Studying the structural characteristics of the virus during its mature and infectious phase can provide crucial information on the mechanisms by which it enters and replicates within host cells, as well as its evolution, transmission, and interaction with other living organisms. The symmetric pattern present in the …


Microscopic And Spectroscopic Analysis Of Nordihydroguaiaretic Acid Effect On Astrocytes, Lizbeth Vanessa Martinez Lopez May 2023

Microscopic And Spectroscopic Analysis Of Nordihydroguaiaretic Acid Effect On Astrocytes, Lizbeth Vanessa Martinez Lopez

Open Access Theses & Dissertations

Astrocytes, one of the most abundant cell components in the central nervous system (CNS), have been a research target in the last few years. Several studies have found that astrocytes are not only mere supporters of neurons but also of essential processes developed in the CNS. Their malfunction could induce neurodegenerative diseases and brain tumors. Thus, further understanding of astrocytes and their role is of high interest to develop possible new treatments and methods of disease diagnosis, especially in brain cancer. The plant Larrea tridentata (La Gobernadora in Mexico or Creosote bush in the United States) is known to have …


Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel May 2023

Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel

Honors Scholar Theses

Among structural biology techniques, Nuclear Magnetic Resonance (NMR) provides a holistic view of structure that is close to protein structure in situ. Namely, NMR imaging allows for the solution state of the protein to be observed, derived from Nuclear Overhauser Effect restraints (NOEs). NOEs are a distance range in which hydrogen pairs are observed to stay within range of, and therefore experimental data which computational models can be compared against. To that end, we investigated the effects of adding the NOE restraints as distance restraints in Molecular Dynamics (MD) simulations on the 24 residue HP24stab derived villin headpiece subdomain to …


Analysis Of Biologically Effective Dose For Retroactive Yttrium-90 Trans-Arterial Radioembolization Treatment Optimization, Mj Lindsey Jan 2023

Analysis Of Biologically Effective Dose For Retroactive Yttrium-90 Trans-Arterial Radioembolization Treatment Optimization, Mj Lindsey

CMC Senior Theses

Trans-arterial radioembolization (TARE) is a protracted modality of radiation therapy where radionuclides labeled with Yttrium-90 (90Y) are inserted inside a patient's hepatic artery to treat hepatocellular carcinoma (HCC). While TARE has been shown to be a clinically effective and safe treatment, there is little understanding of the radiobiological relationship between absorbed dose and tissue response, and thus there is no dosimetric standard for treatment planning. The Biologically Effective Dose (BED) formalism, derived from the Linear-Quadratic model of radiobiology, is used to weigh the absorbed dose by the time pattern of delivery. BED is a virtual dose that can …


Interactions Of Amyloid Peptides With Lipid Membranes, Yanxing Yang Dec 2022

Interactions Of Amyloid Peptides With Lipid Membranes, Yanxing Yang

Dissertations

The aggregation of amyloid proteins into fibrils is a hallmark of several diseases including Alzheimer’s (AD), Parkinson’s, and Type II diabetes. This aggregation process involves the formation of small size oligomers preceding the formation of insoluble fibrils. Recent studies have shown that these oligomers are more likely to be responsible for cell toxicity than fibrils. A possible mechanism of toxicity involves the interaction of oligomers with the cell membrane compromising its integrity. In particular, oligomers may form pore-like structures in the cell membrane affecting its permeability or they may induce lipid loss via a detergent-like effect. This dissertation aims to …


Cell Division Dynamics Of Escherichia Coli In Extreme Environments, Steven P. Murray Dec 2022

Cell Division Dynamics Of Escherichia Coli In Extreme Environments, Steven P. Murray

Graduate Theses and Dissertations

Life is remarkable in how resilient it can be. Many organism, classified as ex- tremophiles, can not only survive in extreme environments, but they can thrive in them. In the search for extraterrestrial life, the best candidates to harbor life exist with some kind of extreme condition. Europa, for example, is a favorite for the possibility of accommodating life as we know it within our solar system. Thought there is believed to be a liquid ocean under its icy surface, this habitat would be under immense pressures and high salinity. To best know where to look for extraterrestrial life, it …


The Metabolic Change Of Lipid Species In Stam Mice With Hepatocellular Carcinoma, Devin J. Peart Dec 2022

The Metabolic Change Of Lipid Species In Stam Mice With Hepatocellular Carcinoma, Devin J. Peart

UNLV Theses, Dissertations, Professional Papers, and Capstones

Primary liver cancer hepatocellular carcinoma (HCC) is the second leading cause of cancer death worldwide. In the US, primary liver cancer is the most rapidly increasing type of cancer due to increases in hepatitis B and C and the continued trend of greater and greater percentages of the population suffering from obesity, diabetes mellitus and metabolic syndrome. The prognosis for this disease is poor, with a 5-year survival rate of 26% as compared to only 2% when the cancer is metastatic. Unfortunately, current strategies for early detection of HCC, including routine CT imaging or alpha-fetoprotein biomarker, are suboptimal and tend …


The Role Of Conformational Changes In Viral And Bacterial Protein Functions, Md Lokman Hossen Jun 2022

The Role Of Conformational Changes In Viral And Bacterial Protein Functions, Md Lokman Hossen

FIU Electronic Theses and Dissertations

Proteins do versatile work in cells. They require a cascade of structural changes to perform different tasks like binding to the other neighboring biomolecules, transporting small chemicals, activating a chemical reaction, etc. The structural conformations of proteins can be critical in changing their working ability. In this dissertation, I investigated the role of conformational changes of viral protein, e.g., spike and envelope protein of SARS-CoV-2, and bacterial protein, e.g., multidrug transporter and toxic extrusion protein- PfMATE from Pyrococcus furiosus. Also, I performed molecular docking-based drug screening targeting the E protein to suggest a set of drugs that can be repurposed …


Symmetry-Inspired Analysis Of Biological Networks, Ian Leifer Jun 2022

Symmetry-Inspired Analysis Of Biological Networks, Ian Leifer

Dissertations, Theses, and Capstone Projects

The description of a complex system like gene regulation of a cell or a brain of an animal in terms of the dynamics of each individual element is an insurmountable task due to the complexity of interactions and the scores of associated parameters. Recent decades brought about the description of these systems that employs network models. In such models the entire system is represented by a graph encapsulating a set of independently functioning objects and their interactions. This creates a level of abstraction that makes the analysis of such large scale system possible. Common practice is to draw conclusions about …


Modelling Juxtacrine Mediated Tumor-Fibroblast Interactions In Three-Dimensional Co-Cultures Of Pancreatic Ductal Adenocarcinoma, Eric Struth May 2022

Modelling Juxtacrine Mediated Tumor-Fibroblast Interactions In Three-Dimensional Co-Cultures Of Pancreatic Ductal Adenocarcinoma, Eric Struth

Graduate Masters Theses

The tumor-microenvironment is a rich and complex milieu of mutated cancer cells and otherwise healthy cells engaged in dynamic interactions. Fibroblasts, the most abundant cellular component of human connective tissues, are implicated in a tumor promoting process known as stromal crosstalk. This stromal crosstalk is driven by numerous signaling pathways including contact mediated juxtacrine signaling and directed long distance paracrine signaling. Recent research suggests these signaling pathways are particularly important for two distinct types of fibroblasts. Mayofibroblastic cancer associated fibroblasts (MyCAFs) are associated with tumor suppression and shown to rely primarily on juxtacrine signaling, while inflammatory cancer associated fibroblasts (iCAFs) …


Optimization Of Modular, Long-Range, Ultra-Fast Optical Tweezers With Fluorescence Capabilities For Single-Molecule And Single-Cell Based Biophysical Measurements, Subash C. Godar May 2022

Optimization Of Modular, Long-Range, Ultra-Fast Optical Tweezers With Fluorescence Capabilities For Single-Molecule And Single-Cell Based Biophysical Measurements, Subash C. Godar

All Dissertations

An Optical tweezer is a tightly focused laser beam that applies and senses precise and localized optical force to a dielectric microsphere and offers a unique and effective tool for manipulating the single cell or cell components, including nucleotides and dynein motor proteins. Here, I used highly stabilized optomechanical components and ultra-sensitive detection modules to significantly improve the measurement capabilities over a wide range of temporal and spatial scales. I combined the optical tweezer-based force spectroscopy technique with fluorescence microscopy to develop an integrated high-resolution force-fluorescence system capable of measuring displacements at sub-nanometer, forces at sub-piconewton over a temporal range …


Ongoing Calculus In The Cerebral Cortex, Luke Long May 2022

Ongoing Calculus In The Cerebral Cortex, Luke Long

Physics Undergraduate Honors Theses

Various modes of neuronal computations have long been theorized to be possible based on the structure and geometry of the brain. These computations also seem necessary for many of the integral functions of the brain, like information processing and regulatory processes in the body. However, experimental data directly supporting these claims have been rare.

In this study, data collected in mice from a large number of neurons over a long period of time provided the opportunity to search for some of these computations, specifically change detection and squaring calculations. Using Matlab, the goal of this analysis was to find statistically …


Supertertiary Structural Dynamics Modulate Function In Postsynaptic Density Protein 95, George L. Hamilton Iii May 2022

Supertertiary Structural Dynamics Modulate Function In Postsynaptic Density Protein 95, George L. Hamilton Iii

All Dissertations

Proteins, RNA, and DNA serve as the primary sub-cellular machinery that give rise to the necessary functions of life. The long-standing paradigm has been that the structures of biomolecules, or the arrangement of the subunits that make up a biomolecule, determine biological function. However, biomolecules are not static objects. Instead, they often undergo structural rearrangements that are crucial to enabling and regulating their functions. In my thesis I present several studies of the interplay between the structures, dynamics, and functions of biomolecules that combine experimental fluorescence spectroscopy and computational methods to probe these systems at the single-molecule level. In particular, …


Effects Of Pore-Forming Peptides (Melittin And Magainin 2) On The Phospholipid Bilayer Interior, Elmukhtar Ehmed Alhatmi Mar 2022

Effects Of Pore-Forming Peptides (Melittin And Magainin 2) On The Phospholipid Bilayer Interior, Elmukhtar Ehmed Alhatmi

Dissertations and Theses

Antimicrobial peptides (AMPs) are one of the most promising solutions to drug-resistant bacteria. Melittin and magainin 2 are two of the most representative and extensively studied AMPs. In this research, I investigated the interaction of these two AMPs with three models of cell membranes: 80% POPC 20% POPG, 40%POPC 40% POPE and 20% POPG, and 80%POPC 20%POPG plus 30% mole fraction of cholesterol. Time-resolved fluorescence emission and fluorescence anisotropy decays of the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) were analyzed to determine the effects of AMPs on the bilayer headgroup packing and changes in the interior of the phospholipid bilayer during the …


Study Of Zyomogen Granule Movement Along Actin Filaments Using A Single Beam Optical Trap, Justin James Raupp Jan 2022

Study Of Zyomogen Granule Movement Along Actin Filaments Using A Single Beam Optical Trap, Justin James Raupp

Wayne State University Dissertations

Zymogen granules are enzymatic vesicles in the pancreas. The surface of these zymogen granules (ZGs) has several different kinds of myosin molecules, such as myosin 1c, 6, 5c, and 7b. These molecular motors may contribute to ZG transportation in cells. To understand the molecular motors involved in the vesicle trafficking, we observed the in vitro motility of purified ZGs from rat pancreas and examined the stepping behavior and force that is generated using a single beam optical trap. To be involved in trafficking, molecular motors have certain characteristics, a high duty ratio and the ability to move continuously along actin …


Direct Single Molecule Imaging Of Enhanced Diffusion For Enzymes And Enzyme-Conjugated Dna Origami, Mengqi Xu Dec 2021

Direct Single Molecule Imaging Of Enhanced Diffusion For Enzymes And Enzyme-Conjugated Dna Origami, Mengqi Xu

Dissertations - ALL

Enzymes have been shown to diffuse faster in the presence of their substrates. Recently, we revealed new insights into this process of enhanced diffusion using single-particle tracking (SPT) with total internal reflection fluorescence (TIRF) microscopy. We found that the mobility of individual enzymes was enhanced three-fold in the presence of the substrate, and the motion remained Brownian. We showed that the relative increase in diffusion is independent of the total enzyme concentrations; and the oligomerization state of enzymes did not change during the catalytic turnover. These experiments ruled out the possibility that the enhanced enzyme diffusion was caused by the …


Computational Methods For Analysis Of Data For Conformational And Phase Equilibria Of Disordered Proteins, Jared Michael M Lalmansingh Dec 2021

Computational Methods For Analysis Of Data For Conformational And Phase Equilibria Of Disordered Proteins, Jared Michael M Lalmansingh

Arts & Sciences Electronic Theses and Dissertations

Intrinsically disordered proteins and regions (IDPs / IDRs) are a class of proteins with diverse conformational heterogeneity that do not fold into a tertiary structure due to the lack of a native structural state. Consequently, disordered proteins are remarkably flexible and exhibit multivalent properties that enable them to adopt myriad functional roles within the cell such as: signaling transduction, transcription, enzymatic catalysis, translation, and many more. Due to their multivalency, some IDPs undergo monomeric and heterotypic interactions which can drive phase separation. Such IDPs can form membraneless organelles with specific regulatory roles within the cell which include, but are not …


Loren Haarsma - When Did Sin Begin?, Loren Haarsma Sep 2021

Loren Haarsma - When Did Sin Begin?, Loren Haarsma

University Faculty Publications and Creative Works

Patrick Hamilton speaks to Calvin University Professor, Loren Haarsma, about the origins of sin and various ways to make sense of the doctrine of original sin in light of evolutionary origins. Other topics of conversation include psychology, free will and the theology of Saint Augustine.


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang Sep 2021

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


X Radiation Dose Monitoring For Adolescent And Adult Patients In Selected Health Care Environment Related Places, Kevin Riandi Jul 2021

X Radiation Dose Monitoring For Adolescent And Adult Patients In Selected Health Care Environment Related Places, Kevin Riandi

Journal of Environmental Science and Sustainable Development

A study on patient absorption dose according to age group was carried out. The amount of absorbed A study on patient absorption dose according to age group was carried out. The amount of absorbed dose of X-ray radiation affect the body cells. Health care hospitals such as clinics, environments that use ionizing radiation. Based on the procedure for using ionizing radiation for medical purposes, the Indonesian Nuclear Energy Supervisory Agency recommends monitoring radiation doses for health workers on health service environment. Likewise with the patient, because the patient is directly exposed to the ionizing radiation. Some researh explained that the …