Open Access. Powered by Scholars. Published by Universities.®

Biophysics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biophysics

Lions, Tigers, And Hemes - Oh My! A Dynamic Look At The Electronic Effects Of Porphyrin Substitution On Cytochrome P450 Olet, Alexis J. Holwerda Apr 2021

Lions, Tigers, And Hemes - Oh My! A Dynamic Look At The Electronic Effects Of Porphyrin Substitution On Cytochrome P450 Olet, Alexis J. Holwerda

Senior Theses

OleT, a member of the CYP152 family of cytochrome P450s (CYPs), decarboxylates fatty acids using hydrogen peroxide as an oxidant. The resultant products are a terminal alkene and carbon dioxide. This C–C cleavage reaction is highly atypical for CYPs, which prototypically oxygenate substrates, and provides a potential means to enzymatically produce drop-in fuels. OleT contains a heme-iron cofactor that facilitates decarboxylation through the activation of hydrogen peroxide. The catalytic cycle, as determined by transient kinetics, includes two ferryl intermediates known as Compound I (Ole-I) and Compound II (Ole-II). Ole-I performs substrate hydrogen abstraction and subsequent single electron transfer to Ole-II …


Thermodynamics And Conformational Heterogeneity Of Recbcd Binding To Dna Ends, Linxuan Hao Jan 2021

Thermodynamics And Conformational Heterogeneity Of Recbcd Binding To Dna Ends, Linxuan Hao

Arts & Sciences Electronic Theses and Dissertations

E. coli RecBCD is crucial in initiating repair of double stranded (ds) DNA breaks. It is a heterotrimeric helicase and nuclease complex possessing two ATPase motors, RecB and RecD, and a regulatory subunit without ATPase activity, RecC. The RecB subunit also contains a 30kDa nuclease domain (RecBNuc) that, according to published structural data, is situated over 60Å away from the site of dsDNA binding. Surprisingly, we have shown in previous studies that deletion of RecBNuc to form RecBΔNucCD affects its dsDNA unwinding properties. The mechanism by which RecBNuc influences RecBCD dsDNA unwinding is unclear. In this thesis, equilibrium binding techniques, …


Specificity Of Ssb Binding To Its Interacting Proteins And Multiple Allosteric Effects Of Ssb C-Terminal Tail On Assembly And Dna Binding Of E. Coli Recor Proteins, Min Kyung Shinn Aug 2020

Specificity Of Ssb Binding To Its Interacting Proteins And Multiple Allosteric Effects Of Ssb C-Terminal Tail On Assembly And Dna Binding Of E. Coli Recor Proteins, Min Kyung Shinn

Arts & Sciences Electronic Theses and Dissertations

The homo-tetrameric E. coli single strand (ss) DNA binding (SSB) protein is an essential component in DNA maintenance for its role in binding and protecting single stranded DNA intermediates via its N-terminal DNA binding domain (DBD). SSB also acts as a hub to recruit at least 17 SSB interacting proteins (SIPs) involved in DNA replication, recombination, and repair via its 9 amino acid C-terminal acidic tip region. A 56 amino acid intrinsically disordered linker connects the DBD and the acidic tip and plays a role in cooperative binding to ssDNA. Using isothermal titration calorimetry, I determined that the SSB-Ct peptides …


Amyloid Proteins And Fibrils Stability, Farbod Mahmoudinobar Dec 2019

Amyloid Proteins And Fibrils Stability, Farbod Mahmoudinobar

Dissertations

Compared to globular proteins that have a stable native structure, intrinsically disordered peptides (IDP) sample an ensemble of structures without folding into a native conformation.One example of IDP is the amyloid-beta(Abeta) protein which is the main constituent of senile plaques in the brain of Alzheimer's patients.Understanding the process by which IDPs undergo structural changes to form oligomers that eventually aggregate into senile plaques/amyloid fibrils may significantly advance the development of novel therapeutic methods to treat neurodegenerative diseases, for which there is no cure to date. This dissertation has two main objectives. The first one is to investigate and identify structural …


Cloning, Purification, And Preliminary Dna-Binding And Unfolding Results For The Dna Polymerase I From The Psychrophile Psychromonas Ingrahamii, John Tod Baker Apr 2018

Cloning, Purification, And Preliminary Dna-Binding And Unfolding Results For The Dna Polymerase I From The Psychrophile Psychromonas Ingrahamii, John Tod Baker

LSU Master's Theses

Psychromonas ingrahamii is a psychrophilic bacterium that lives in Arctic polar sea ice and grows at a temperature range of -12 to 10º C. This bacterium resides within veins inside the ice where the salinity is high, resulting in a freezing point depression and liquid water. The large fragment of DNA polymerase I from Psychromonas ingrahamii, called Klenpin, has been cloned, expressed, and purified in our laboratory. Although enzyme kinetic studies have been performed on a few psychrophilic enzymes, the thermodynamics of ligand binding and of protein stability have not been well studied for this class of extremophilic proteins. …


Thermodynamics In Large Hairpin Polyamide-Dna Interactions, Yang Song Mar 2018

Thermodynamics In Large Hairpin Polyamide-Dna Interactions, Yang Song

Dissertations

Human papillomavirus (HPV) is a common sexually transmitted virus responsible for cervical cancers, and its infection is currently incurable. Only a few vaccines against high-risk HPV strains are available. Hairpin polyamides (PAs) in different sizes (8-20 units long) bind DNA in different lengths. They have been shown to have different anti-HPV activities in cell culture.

The interaction between PA and DNA is stabilized by two types of molecular forces: attractive and repulsive forces. Attractive forces include hydrogen bonds, van der Waals contacts and electrostatic forces between PA and DNA. Repulsive forces include the hydrophobic effect, which forces the PA out …


Using Competition Assays To Quantitatively Model Cooperative Binding By Transcription Factors And Other Ligands., Jacob Peacock, James B Jaynes Nov 2017

Using Competition Assays To Quantitatively Model Cooperative Binding By Transcription Factors And Other Ligands., Jacob Peacock, James B Jaynes

Department of Biochemistry and Molecular Biology Faculty Papers

BACKGROUND: The affinities of DNA binding proteins for target sites can be used to model the regulation of gene expression. These proteins can bind to DNA cooperatively, strongly impacting their affinity and specificity. However, current methods for measuring cooperativity do not provide the means to accurately predict binding behavior over a wide range of concentrations.

METHODS: We use standard computational and mathematical methods, and develop novel methods as described in Results.

RESULTS: We explore some complexities of cooperative binding, and develop an improved method for relating in vitro measurements to in vivo function, based on ternary complex formation. We derive …


Probing Secondary And Tertiary Rna Folding Using Force And Temperature, William Stephenson Jan 2014

Probing Secondary And Tertiary Rna Folding Using Force And Temperature, William Stephenson

Legacy Theses & Dissertations (2009 - 2024)

RNA folding is the process whereby a single stranded RNA molecule assumes its three-dimensional functional conformation. Along with the protein folding problem, the RNA folding problem remains as one of the great unsolved problems in biophysics. Generally RNA folding occurs in a hierarchical manner whereby the sequence of an RNA (primary structure) determines which regions will form helical segments (secondary structure) before further rearrangement and base pairing of secondary structure motifs (tertiary structure). Due to the intimate connection between structure and function within molecular biology, increased familiarity with the thermodynamic and kinetic factors that govern RNA folding will permit the …


Mechanism For Membrane Electroporation Irreversibility Under High-Intensity, Ultrashort Electrical Pulse Conditions, R. P. Joshi, K. H. Schoenbach Jan 2002

Mechanism For Membrane Electroporation Irreversibility Under High-Intensity, Ultrashort Electrical Pulse Conditions, R. P. Joshi, K. H. Schoenbach

Bioelectrics Publications

An improved electroporation model is used to address membrane irreversibility under ultrashort electric pulse conditions. It is shown that membranes can survive a strong electric pulse and recover provided the pore distribution has a relatively large spread. If, however, the population consists predominantly of larger radii pores, then irreversibility can result. Physically, such a distribution could arise if pores at adjacent sites coalesce. The requirement of close proximity among the pore sites is more easily satisfied in smaller organelles than in outer cell membranes. Model predictions are in keeping with recent observations of cell damage to intracellular organelles (e.g., mitochondria), …