Open Access. Powered by Scholars. Published by Universities.®

Biophysics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Biophysics

Biomolecular Function From Structural Snapshots, Roshanak Etemadpour Dec 2023

Biomolecular Function From Structural Snapshots, Roshanak Etemadpour

Theses and Dissertations

Biological molecules can assume a continuous range of conformations during function. Near equilibrium, the Boltzmann relation connects a particular conformation's free energy to the conformation's occupation probability, thus giving rise to one or more energy landscapes. Biomolecular function proceeds along minimum-energy pathways on such landscapes. Consequently, a comprehensive understanding of biomolecular function often involves the determination of the free-energy landscapes and the identification of functionally relevant minimum-energy conformational paths on these landscapes. Specific techniques are necessary to determine continuous conformational spectra and identify functionally relevant conformational trajectories from a collection of raw single-particle snapshots from, e.g. cryogenic electron microscopy (cryo-EM) …


Study Of Binding Induced Mechanical Stabilization Of Proteins Using A Single Molecule Approach, Narayan Prasad Dahal Aug 2021

Study Of Binding Induced Mechanical Stabilization Of Proteins Using A Single Molecule Approach, Narayan Prasad Dahal

Theses and Dissertations

Proteins operating under force are involved in several biological processes and perform multiple roles. While the structures and roles of numerous proteins are ubiquitous, their involvement in binding-induced stabilization is currently poorly understood. Most protein systems operating under force interact with their binding partners in a force-dependent manner. Such systems are related to bacterial adhesion, cellular mechano-transduction, and muscle contraction. With a goal of understanding mechanical stability induced through ligand binding, I used single-molecule magnetic tweezers to study several protein systems. This approach involves protein engineering and hetero-covalent attachment chemistry, which, combined with magnetic tweezers, allows us to characterize the …


Investigation Of G Protein-Coupled Receptor Quaternary Structure Through Fluorescence Micro-Spectroscopy And Theoretical Modeling: Interdependence Between Receptor-Receptor And Receptor-Ligand Interactions, Joel David Paprocki May 2021

Investigation Of G Protein-Coupled Receptor Quaternary Structure Through Fluorescence Micro-Spectroscopy And Theoretical Modeling: Interdependence Between Receptor-Receptor And Receptor-Ligand Interactions, Joel David Paprocki

Theses and Dissertations

Proteins are of high interest in biophysics research due to the important roles they play within cells, such as sensing of chemical (ions and small molecules) and physical (e.g., light) stimuli, providing structure, transporting ions/molecules, signaling, and intercellular communication. The studies described in this dissertation focus on a particular type of membrane proteins known as G protein-coupled receptors (GPCR), which play a key role in cellular response to external stimuli. We used the sterile 2 α-factor mating pheromone receptor (Ste2), a prototypical class D GPCR present within Saccharomyces cerevisiae (baker’s yeast). Ste2 is responsible for initiating the second messenger signal …


Rapid Diffusion Observed In Microcrystals By X-Ray Free Electron Laser Mix-And-Inject Serial Crystallography, Tek Narsingh Malla Dec 2020

Rapid Diffusion Observed In Microcrystals By X-Ray Free Electron Laser Mix-And-Inject Serial Crystallography, Tek Narsingh Malla

Theses and Dissertations

With time resolved X-ray crystallography (TRX), it is possible to follow reaction progress in real time. The time resolution is achieved by initiating reaction in crystal prior to X-ray exposure, and then collecting diffraction pattern at different time delays. Time resolved serial femtosecond crystallography (TR-SFX) at X-ray free electron laser (XFELs) allows damage free data collection from microcrystals. Mix-and-inject serial crystallography (MISC) is a type of TR-SFX established at XFELs. In MISC, reaction in enzymatic crystals is triggered by mixing with a substrate, and the resulting structural changes are probed by XFEL pulses.Enzymatic reactions are of great interest due to …


Macromolecular Structure Determination At X-Ray Free Electron Lasers From Single-Particle Imaging To Time-Resolved X-Ray Crystallography, Ishwor Poudyal Dec 2020

Macromolecular Structure Determination At X-Ray Free Electron Lasers From Single-Particle Imaging To Time-Resolved X-Ray Crystallography, Ishwor Poudyal

Theses and Dissertations

X-ray free-electron lasers (XFELs) open the possibility of obtaining diffraction information from a single biological macromolecule. This is because XFELs can generate extremely intense X-ray pulses which are so short that diffraction data can be collected before the sample is destroyed. By collecting a sufficient number of single-particle diffraction patterns from many tilts of a molecule relative to the X-ray beam, the three-dimensional electron density can be reconstructed ab-initio. The resolution and therefore the information content of the data will ultimately depend largely on the number of patterns collected at the experiment. We estimate the number of diffraction patterns required …


Pump-Probe And Mix-And-Inject Experiments At X-Ray Free Electron Lasers, Suraj Pandey Dec 2020

Pump-Probe And Mix-And-Inject Experiments At X-Ray Free Electron Lasers, Suraj Pandey

Theses and Dissertations

Time resolved serial femtosecond crystallography (TR-SFX) utilizes X-ray crystallography to visualize the reaction of molecules in real time at the atomic level. Crystals of biological macromolecules are exposed to powerful X-ray pulses. The X-ray radiation emitted by the crystal is then measured by an X-ray sensitive area detector that produces an image called a diffraction pattern. These patterns are analyzed to determine a three-dimensional atomic structure of the biological macromolecule.The ultimate goal of TR-SFX is to make a “molecular movie” that shows the reaction dynamics of a biological process. For this, a reaction is started in a macromolecular crystal and …


An Assessment Of Bsa Protein Hydrogel Biocompatibility In The Vertebrate Intestinal Tract, Ryan Joseph Garde Aug 2019

An Assessment Of Bsa Protein Hydrogel Biocompatibility In The Vertebrate Intestinal Tract, Ryan Joseph Garde

Theses and Dissertations

The fields of biomedicine and pharmacology have a mission to design methods to treat disease while minimizing adverse side effects using novel drug delivery systems. In developing new therapeutic systems, it is crucial to test that drug delivery systems target pathological cells and tissue and is non-toxic in healthy tissue. One promising method for targeted drug delivery is the use of hydrogels as carriers. Here, we studied the effects of bovine serum albumin (BSA) hydrogel consumption to assess the potential for hydrogel use in treating intestinal disease via oral administration. We investigated intestinal architecture and cell populations following hydrogel treatments …


Interactions Of Viral And Cellular Helicases, Megan Josephine Corby May 2018

Interactions Of Viral And Cellular Helicases, Megan Josephine Corby

Theses and Dissertations

The innate immune system is a part of the first line of defense against virus infection. An important subset of the innate immune system consists of a group of intracellular pattern recognition receptors (PRRs) which recognize conserved features of bacteria and viruses and initiate an interferon response. The RIG-I like receptors (RLRs) are PRRs that bind to RNA viruses (such as hepatitis c virus) and signal through the adaptor mitochondrial anti-viral signaling protein (MAVS).

Hepatitis C virus (HCV) is a small enveloped RNA virus that belongs to the flaviviridae family of viruses. HCV infects hepatocytes and can cause a persistent …


Time-Resolved Structural Enzymology At X-Ray Free Electron Lasers, Tyler Norwood May 2018

Time-Resolved Structural Enzymology At X-Ray Free Electron Lasers, Tyler Norwood

Theses and Dissertations

Within the last decade, X-ray Free Electron Lasers (XFELs) have emerged across the world. These XFELs produce X-ray pulses with a duration on the order of femtoseconds, each of which contains 1012 photons. Before the XFEL, the brightest X-ray sources were 3rd generation synchrotrons. While these facilities are still very important for many experiments, XFELs allow for time-resolved experiments with femtosecond time resolution and mixing experiments that are not possible at the synchrotron. Enzymatic processes have promising prospects for medicine which use proteins as drug targets and enhance our understanding of these important biomolecules.

A number of procedures are involved …


Biomedical Applications Of Mid-Infrared Spectroscopic Imaging And Multivariate Data Analysis: Contribution To The Understanding Of Diabetes Pathogenesis, Ebrahim Aboualizadeh Aug 2017

Biomedical Applications Of Mid-Infrared Spectroscopic Imaging And Multivariate Data Analysis: Contribution To The Understanding Of Diabetes Pathogenesis, Ebrahim Aboualizadeh

Theses and Dissertations

Diabetic retinopathy (DR) is a microvascular complication of diabetes and a leading cause of adult vision loss. Although a great deal of progress has been made in ophthalmological examinations and clinical approaches to detect the signs of retinopathy in patients with diabetes, there still remain outstanding questions regarding the molecular and biochemical changes involved. To discover the biochemical mechanisms underlying the development and progression of changes in the retina as a result of diabetes, a more comprehensive understanding of the bio-molecular processes, in individual retinal cells subjected to hyperglycemia, is required. Animal models provide a suitable resource for temporal detection …


Investigation Of Membrane Receptors’ Oligomers Using Fluorescence Resonance Energy Transfer And Multiphoton Microscopy In Living Cells, Ashish K. Mishra May 2017

Investigation Of Membrane Receptors’ Oligomers Using Fluorescence Resonance Energy Transfer And Multiphoton Microscopy In Living Cells, Ashish K. Mishra

Theses and Dissertations

Investigating quaternary structure (oligomerization) of macromolecules (such as proteins and nucleic acids) in living systems (in vivo) has been a great challenge in biophysics, due to molecular diffusion, fluctuations in several biochemical parameters such as pH, quenching of fluorescence by oxygen (when fluorescence methods are used), etc.

We studied oligomerization of membrane receptors in living cells by means of Fluorescence (Förster) Resonance Energy Transfer (FRET) using fluorescent markers and two photon excitation fluorescence micro-spectroscopy. Using suitable FRET models, we determined the stoichiometry and quaternary structure of various macromolecular complexes. The proteins of interest for this work are : (1) sigma-1 …


Symmetry And Reconstruction Of Particle Structure From Random Angle Diffraction Patterns, Sandi Wibowo Dec 2016

Symmetry And Reconstruction Of Particle Structure From Random Angle Diffraction Patterns, Sandi Wibowo

Theses and Dissertations

The problem of determining the structure of a biomolecule, when all the evidence from experiment consists of individual diffraction patterns from random particle orientations, is the central theoretical problem with an XFEL. One of the methods proposed is a calculation over all measured diffraction patterns of the average angular correlations between pairs of points on the diffraction patterns. It is possible to construct from these a matrix B characterized by angular momentum quantum number l, and whose elements are characterized by radii q and q’ of the resolution shells. If matrix B is considered as dot product of vectors, which …


Structural And Functional Characterization Of Acetoacetate Decarboxylase-Like Enzymes, Lisa Mueller Aug 2016

Structural And Functional Characterization Of Acetoacetate Decarboxylase-Like Enzymes, Lisa Mueller

Theses and Dissertations

The acetatoacetate decarboxylase-like superfamily (ADCSF) is a largely unexplored group of enzymes that may be a potential source of new biocatalysts. Bioinformatic analysis has grouped these approximately 2000 enzymes into seven different families based on comparison of predicted active site residues. To date, only the prototypical ADCs (Family I) that catalyze the decarboxylation of acetoacetate have been studied. Analysis of gene context suggests that Family V contains predominantly enzymes predicted to be involved in secondary metabolism. On average, these share about 20% sequence identity to the true ADCs. To learn more about the diversity of chemistries performed by members of …


Theoretical Investigation Of Interactions And Relaxation In Biological Macromolecules, Koki Yokoi Dec 2015

Theoretical Investigation Of Interactions And Relaxation In Biological Macromolecules, Koki Yokoi

Theses and Dissertations

One of the major challenges posed to our quantitative understanding of structure, dynamics, and function of biological macromolecules has been the high level of complexity of biological structures. In the present work, we studied interactions between G protein-coupled receptors (GPCRs), and also introduced a theoretical model of relaxation in complex systems, in order to help understand interactions and relaxation in biological macromolecules.

GPCRs are the largest and most diverse family of membrane receptors that play key roles in mediating signal transduction between outside and inside of a cell. Oligomerization of GPCRs and its possible role in function and signaling currently …


Time-Resolved, Near Atomic Resolution Structural Studies At The Free Electron Laser, Jason James Tenboer Dec 2015

Time-Resolved, Near Atomic Resolution Structural Studies At The Free Electron Laser, Jason James Tenboer

Theses and Dissertations

Time-resolved serial femtosecond crystallography (TR-SFX) employs X-ray free electron lasers (XFELs) to provide X-ray pulses of femtosecond (fs) duration with 1012 photons per pulse. These XFELs are more than a billion times more brilliant than 3rd generation synchrotron X-ray sources. For structure determination, protein crystals on the micrometer length scale (microcrystals) are injected into the X-ray beam and the resulting diffraction patterns are recorded on fast-readout pixel detectors. Although these intense pulses deposit enough energy to ultimately destroy the protein, the processes that lead to diffraction occur before the crystal is destroyed. This so-called diffraction-before-destruction principle overcomes radiation damage, which …


Porphyrin As A Spectroscopic Probe Of Net Electric Fields In Heme Proteins, Hannah Elizabeth Wagie Dec 2015

Porphyrin As A Spectroscopic Probe Of Net Electric Fields In Heme Proteins, Hannah Elizabeth Wagie

Theses and Dissertations

Heme proteins have diverse functions as well as varied structures but share the same organic, conjugated cofactor. Similarly varied approaches have been taken to deduce how heme can take on different roles based on its protein environment. A unique approach is to view the protein matrix as a constellation of point charges that generates a defined, reproducible, net internal electric field that has influence over the electronic properties of the heme cofactor. This work considers how porphyrins, the basic chromophore building block of heme, can be used as a native spectroscopic sensor of internal electric field at the active site …


Oligomerization Of The Sterile-2 G-Protein Coupled Receptor In Yeast Cells In The Presence And Absence Of Alpha-Factor Pheromone Using Fluorescence Spectroscopy And Forster Resonance Energy Transfer Analysis, Joel David Paprocki Dec 2014

Oligomerization Of The Sterile-2 G-Protein Coupled Receptor In Yeast Cells In The Presence And Absence Of Alpha-Factor Pheromone Using Fluorescence Spectroscopy And Forster Resonance Energy Transfer Analysis, Joel David Paprocki

Theses and Dissertations

G-protein-coupled receptors (GPCRs) are the largest family of receptors that respond to a wide variety of extracellular stimuli, including molecular ligands such as odorants, neurotransmitters, and hormones, as well as physical agents sigh as light and pressure. The stimulation event results in initiating conformational changes in the structure of the receptor, which further results in the release of the heterotrimeric G-protein; the latter has a variety of functions within signaling pathways in cellular biology. The GPCR explored in this investigation is the Sterile 2 α-factor receptor (Ste2), whose natural function is that of a yeast mating pheromone receptor. Its natural …


Structure And Function Of Proteins Investigated By Crystallographic And Spectroscopic Time-Resolved Methods, Namrta Purwar Dec 2013

Structure And Function Of Proteins Investigated By Crystallographic And Spectroscopic Time-Resolved Methods, Namrta Purwar

Theses and Dissertations

Biomolecules play an essential role in performing the necessary functions for life. The goal of this thesis is to contribute to an understanding of how biological systems work on the molecular level. We used two biological systems, beef liver catalase (BLC) and photoactive yellow protein (PYP). BLC is a metalloprotein that protects living cells from the harmful effects of reactive oxygen species by converting H2O2 into water and oxygen. By binding nitric oxide (NO) to the catalase, a complex was generated that mimics the Cat-H2O2 adduct, a crucial intermediate in the reaction promoted by the catalase. The Cat-NO complex is …


Protein Association In Living Cells Using Fret Spectrometry: Application To G-Protein Coupled Receptors, Suparna Patowary Dec 2013

Protein Association In Living Cells Using Fret Spectrometry: Application To G-Protein Coupled Receptors, Suparna Patowary

Theses and Dissertations

Recent advancements in fluorescence microscopy coupled with newly developed fluorescent tags have transformed Fluorescence (Förster) Resonance Energy Transfer (FRET) into a powerful tool studying in vivo molecular interactions with improved spatial (angstrom) resolution. Though widely used to study protein-protein interactions, generalizing and testing the FRET theory for oligomeric complexes containing multiple donors and acceptors has only become possible in recent years. Therefore, many aspects of it are yet unexplored.

In this work, we tested the kinetic theory of FRET using linked fluorescent proteins located in the cytoplasm or at the plasma membrane. We used a novel method developed in our …


Investigation Of The Quaternary Structure Of An Abc Transporter In Living Cells Using Spectrally Resolved Resonance Energy Transfer, Deo R. Singh Dec 2012

Investigation Of The Quaternary Structure Of An Abc Transporter In Living Cells Using Spectrally Resolved Resonance Energy Transfer, Deo R. Singh

Theses and Dissertations

Förster resonance energy transfer (FRET) has become an important tool to study proteins inside living cells. It has been used to explore membrane protein folding and dynamics, determine stoichiometry and geometry of protein complexes, and measure the distance between two molecules. In this dissertation, we use a method based on FRET and optical micro-spectroscopy (OptiMiS) technology, developed in our lab, to probe the structure of dynamic (as opposed to static) protein complexes in living cells. We use this method to determine the association stoichiometry and quaternary structure of an ABC transporter in living cells. Specifically, the transporter we investigate originates …