Open Access. Powered by Scholars. Published by Universities.®

Biophysics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Biophysics

Intrinsically Disordered Proteins And Their Role In Biomolecular Condensates, Danielle Latham May 2024

Intrinsically Disordered Proteins And Their Role In Biomolecular Condensates, Danielle Latham

All Dissertations

Proteins are biomacromolecules responsible for the functions of life. While classically proteins are thought to be well structured in order to perform a specific function, 50% of proteins within Eukaryotic cells contain intrinsically disordered regions (IDRs), regions with no well-defined structure. IDRs are often used for cell signaling, responding to external factors such as temperature changes or the presence of small molecules. To understand how IDRs can function without structure, it is important to understand the dynamics of such systems. Understanding IDR intramolecular and intermolecular interactions will shed light on IDR dynamics. Intramolecular interactions are first explored using fluorescence spectroscopy …


Investigation Of The Binding Domain Interfaces Of The C-Terminus Of The Albino3 Insertase And The 43kda Chloroplast Signal Recognition Particle Subunit Via Single Molecule Förster Resonance Energy Transfer, Amanda Tomanek May 2022

Investigation Of The Binding Domain Interfaces Of The C-Terminus Of The Albino3 Insertase And The 43kda Chloroplast Signal Recognition Particle Subunit Via Single Molecule Förster Resonance Energy Transfer, Amanda Tomanek

Chemistry & Biochemistry Undergraduate Honors Theses

Fluorescent labeling is a technique used for visualizing functional groups contained in biomolecules by fluorescence imaging. This technique was used in this project to analyze post-translational targeting of light-harvesting chlorophyll-binding proteins (LHCP), which are the core complexes that harvest sunlight to drive photosynthetic electron transfer. This protein is synthesized in the cytosol and post-translationally targeted to the stroma of chloroplasts. CpSRP43 is a signal recognition particle (SRP) subunit unique to chloroplasts, which has been shown to interact with the stroma-soluble C-terminus of the thylakoid-bound Albino3 insertase (Alb3-Cterm). In the chloroplast stroma, targeting to thylakoids is performed via the cpSRP pathway …


Data On Spectrum-Based Fluorescence Resonance Energy Transfer Measurement Of E. Coli Multidrug Transporter Acrb, Yuguang Cai, Thomas E. Wilkop, Yinan Wei Dec 2018

Data On Spectrum-Based Fluorescence Resonance Energy Transfer Measurement Of E. Coli Multidrug Transporter Acrb, Yuguang Cai, Thomas E. Wilkop, Yinan Wei

Chemistry Faculty Publications

This paper presented the dataset of correction parameters used in the determination of the energy transfer efficiencies from the spectrum-based fluorescence resonance energy transfer (FRET) measurement in a trimeric membrane protein AcrB. The cyan fluorescent protein (CFP) and yellow fluorescent protein (YPet) were used as the donor and acceptor, respectively. Two AcrB fusion proteins were constructed, AcrB-CFP and AcrB-YPet. The proteins were co-expressed in Escherichia coli cells, and energy transfer efficiency were determined in live cells. To obtain reliable energy transfer data, a complete set of correction parameters need to be first determined to accommodate for factors such as background …


Interactions Of Viral And Cellular Helicases, Megan Josephine Corby May 2018

Interactions Of Viral And Cellular Helicases, Megan Josephine Corby

Theses and Dissertations

The innate immune system is a part of the first line of defense against virus infection. An important subset of the innate immune system consists of a group of intracellular pattern recognition receptors (PRRs) which recognize conserved features of bacteria and viruses and initiate an interferon response. The RIG-I like receptors (RLRs) are PRRs that bind to RNA viruses (such as hepatitis c virus) and signal through the adaptor mitochondrial anti-viral signaling protein (MAVS).

Hepatitis C virus (HCV) is a small enveloped RNA virus that belongs to the flaviviridae family of viruses. HCV infects hepatocytes and can cause a persistent …


Dissecting Molecular Pathways That Ensure Proper Chromosome Segregation And Cell Division, Anna Ye Nov 2017

Dissecting Molecular Pathways That Ensure Proper Chromosome Segregation And Cell Division, Anna Ye

Doctoral Dissertations

Equal segregation of the genome is a prerequisite for cell survival. During cell division the duplicated DNA is compacted into chromosomes and a multi-protein macrostructure, known as the kinetochore (Kt), is assembled on each copy of compacted DNA. Simultaneously, the mitotic spindle, which is made up of microtubules (MTs), is built to facilitate the equal distribution of the chromosomes between the resulting daughter cells. Kinetochores mediate the interaction between the MTs and the chromosomes, properly positioning them for segregation. To ensure that the DNA is equally divided in every cell division, cells have built a surveillance system to detect any …


Fret-Based Investigations Of The Structure-Function Relationships In The Nmda Receptor, Drew M. Dolino May 2017

Fret-Based Investigations Of The Structure-Function Relationships In The Nmda Receptor, Drew M. Dolino

Dissertations & Theses (Open Access)

The N-methyl-D-aspartate (NMDA) receptor is one member of a class of proteins known as the ionotropic glutamate receptors. Ionotropic glutamate receptors mediate the majority of excitatory neurotransmission in the central nervous system, with the NMDA receptor standing out among these receptors for its requirement of a co-agonist, its magnesium-block-based coincidence detection, its slow kinetics, its calcium permeability, its allosteric modulation, and its especially important functional roles in synaptic plasticity, excitotoxicity, and more. In recent years, a wealth of structural information has come about describing endpoint structures to high resolution, but such structures are unable to fully resolve the movements …


Using Fluorescence Microscopy To Identify A Potential New Treatment For Heart Failure, Ryan D. Himes Apr 2017

Using Fluorescence Microscopy To Identify A Potential New Treatment For Heart Failure, Ryan D. Himes

Scholar Week 2016 - present

Cardiac glycosides have been used to treat heart failure for centuries, but they have a narrow therapeutic window, as they inhibit their target receptor nearly irreversibly. Overdoses can lead to arrhythmias. Phospholemman is a natural inhibitor of the same target as cardiac glycosides. It is possible that mutating phospholemman could achieve the same therapeutic benefit, while allowing cells to reverse the inhibition and thereby avoid an arrhythmia. I used fluorescence microscopy to screen candidate phospholemman mutants and identify one that binds more avidly to its target than the naturally occurring phospholemman. This mutant, L30A, caused similar effects as cardiac glycosides …


Functional Effects Of Calcium Regulation Of Thin Filaments At Single Particle Resolution, Christopher Solis-Ocampo Jan 2016

Functional Effects Of Calcium Regulation Of Thin Filaments At Single Particle Resolution, Christopher Solis-Ocampo

Electronic Theses and Dissertations

Heart disease is the leading cause of death in the United States. Understanding heart function at the molecular level is critical for developing of more effective treatments. In the cardiac muscle, the thin filament is composed by troponin (Tn), tropomyosin (Tm), and F-actin. It provides Ca2+-dependent regulation of contraction by modulating myosin attachment and force generation in a cooperative scheme. However, this mechanism remains unclear. To understand thin filament activation, we studied the binding and functional properties of Tn and Tm to F-actin at single particle resolution by employing fluorescence image colocalization, in vitro motility assays, and Förster resonance energy …


Theoretical Investigation Of Interactions And Relaxation In Biological Macromolecules, Koki Yokoi Dec 2015

Theoretical Investigation Of Interactions And Relaxation In Biological Macromolecules, Koki Yokoi

Theses and Dissertations

One of the major challenges posed to our quantitative understanding of structure, dynamics, and function of biological macromolecules has been the high level of complexity of biological structures. In the present work, we studied interactions between G protein-coupled receptors (GPCRs), and also introduced a theoretical model of relaxation in complex systems, in order to help understand interactions and relaxation in biological macromolecules.

GPCRs are the largest and most diverse family of membrane receptors that play key roles in mediating signal transduction between outside and inside of a cell. Oligomerization of GPCRs and its possible role in function and signaling currently …


Designing Fret Assays To Study Electrostatic Interactions Pertaining To The Binding Of Intrinsically Disordered Proteins, Ashley Ann Howard Jul 2015

Designing Fret Assays To Study Electrostatic Interactions Pertaining To The Binding Of Intrinsically Disordered Proteins, Ashley Ann Howard

Graduate Theses and Dissertations

Fibroblast growth factor receptor plays a major role in several biological processes. Without FGFR, a human cannot live. FGFR is involved in cell differentiation and wound healing. Of course, if FGFR signaling becomes unregulated, it causes severe distress in the body. Several cancers are contributed to high signaling levels, as well as developmental conditions like rickets and Kallmann’s syndrome. FGFR is thought to undergo an auto-inhibition (or self-regulatory) process in order to try to facilitate regulation. The exact method of this inhibition is currently unknown, but is proposed to involve the unstructured acid box region of FGFR. We developed a …


Oligomerization Of The Sterile-2 G-Protein Coupled Receptor In Yeast Cells In The Presence And Absence Of Alpha-Factor Pheromone Using Fluorescence Spectroscopy And Forster Resonance Energy Transfer Analysis, Joel David Paprocki Dec 2014

Oligomerization Of The Sterile-2 G-Protein Coupled Receptor In Yeast Cells In The Presence And Absence Of Alpha-Factor Pheromone Using Fluorescence Spectroscopy And Forster Resonance Energy Transfer Analysis, Joel David Paprocki

Theses and Dissertations

G-protein-coupled receptors (GPCRs) are the largest family of receptors that respond to a wide variety of extracellular stimuli, including molecular ligands such as odorants, neurotransmitters, and hormones, as well as physical agents sigh as light and pressure. The stimulation event results in initiating conformational changes in the structure of the receptor, which further results in the release of the heterotrimeric G-protein; the latter has a variety of functions within signaling pathways in cellular biology. The GPCR explored in this investigation is the Sterile 2 α-factor receptor (Ste2), whose natural function is that of a yeast mating pheromone receptor. Its natural …


Swarna Ramaswamy_Thesis, Swarna S. Ramaswamy Dec 2014

Swarna Ramaswamy_Thesis, Swarna S. Ramaswamy

Dissertations & Theses (Open Access)

STRUCTURAL INVESTIGATIONS OF LIGAND GATED ION CHANNELS

Swarna Ramaswamy, B.S

Advisor: Vasanthi Jayaraman, Ph.D.

Ion channels form an integral part of membrane proteins. In the nervous system including the central and the peripheral nervous system, ligand gated ion channels form a very important part of intercellular communications. They receive chemical signals and convert them to electrical signal, mainly by allowing ion passage across the cell membrane. Ion passage also translates into downstream signaling events. Faithful translation of these signals and transmittance is crucial for several physiological functions, implying that irregular ion channel function could lead to serious consequences.

This thesis …


Investigation Of The Quaternary Structure Of An Abc Transporter In Living Cells Using Spectrally Resolved Resonance Energy Transfer, Deo R. Singh Dec 2012

Investigation Of The Quaternary Structure Of An Abc Transporter In Living Cells Using Spectrally Resolved Resonance Energy Transfer, Deo R. Singh

Theses and Dissertations

Förster resonance energy transfer (FRET) has become an important tool to study proteins inside living cells. It has been used to explore membrane protein folding and dynamics, determine stoichiometry and geometry of protein complexes, and measure the distance between two molecules. In this dissertation, we use a method based on FRET and optical micro-spectroscopy (OptiMiS) technology, developed in our lab, to probe the structure of dynamic (as opposed to static) protein complexes in living cells. We use this method to determine the association stoichiometry and quaternary structure of an ABC transporter in living cells. Specifically, the transporter we investigate originates …


The Binding Properties And Functional Consequences Of Ryr2-Cam Interaction, Yi Yang Jan 2012

The Binding Properties And Functional Consequences Of Ryr2-Cam Interaction, Yi Yang

Dissertations

The aim of my dissertation is to understand the regulation of RyR2. The whole dissertation is composed of two parts. The first part focused on RyR2-CaM interaction. The second focused on synthetic RyR2 domain peptide (DPc10), which worked as a powerful molecular tool for RyR2 functional and structural studies.

CaM has been long identified as an important cardiac RyR regulator. Broad studies suggest CaM is a critical RyR2 stabilizer and CaM-RyR2 interaction is a critical molecular substrate for arrhythmias and HF pathogenesis, but the in situ binding properties for CaM-RyR2 are still unknown. Here we, Using FRET detection and permeabilized …


Conformational Changes In The Extracellular Domain Of Glutamate Receptors, Anu Rambhadran Dec 2011

Conformational Changes In The Extracellular Domain Of Glutamate Receptors, Anu Rambhadran

Dissertations & Theses (Open Access)

The family of membrane protein called glutamate receptors play an important role in the central nervous system in mediating signaling between neurons. Glutamate receptors are involved in the elaborate game that nerve cells play with each other in order to control movement, memory, and learning.

Neurons achieve this communication by rapidly converting electrical signals into chemical signals and then converting them back into electrical signals. To propagate an electrical impulse, neurons in the brain launch bursts of neurotransmitter molecules like glutamate at the junction between neurons, called the synapse. Glutamate receptors are found lodged in the membranes of the post-synaptic …


Laser-Assisted Single-Molecule Refolding, Rui Zhao Jan 2011

Laser-Assisted Single-Molecule Refolding, Rui Zhao

Wayne State University Dissertations

Non-coding RNAs must fold into precise secondary and tertiary structures in order to perform the biological functions. Due to the flexibility of RNA, the RNA folding energy landscape can be rugged and full of local minimum (kinetic trap). To provide a means to study kinetically trapped RNAs, we have developed a new technique combining single-molecule FRET detection with laser induced temperature jump. We have calibrated the magnitude of the temperature jump with 1˚C accuracy using gold micro-size sensor. The accuracy of temperature calibration was confirmed by close agreement between single-molecule and bulk DNA duplex melting experiments.

HIV 1 DIS RNAs …