Open Access. Powered by Scholars. Published by Universities.®

Controls and Control Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 91 - 120 of 173

Full-Text Articles in Controls and Control Theory

Assessing The Spatial Accuracy And Precision Of Lidar For Remote Sensing In Agriculture, Surya Saket Dasika Jan 2018

Assessing The Spatial Accuracy And Precision Of Lidar For Remote Sensing In Agriculture, Surya Saket Dasika

Theses and Dissertations--Biosystems and Agricultural Engineering

The objective of this whole study was to evaluate a LiDAR sensor for high-resolution remote sensing in agriculture. A linear motion system was developed to precisely control the dynamics of LiDAR sensor in effort to remove uncertainty in the LiDAR position/velocity while under motion. A user control interface was developed to operate the system under different velocity profiles and log LiDAR data synchronous to the motion of the system. The LiDAR was then validated using multiple test targets with five different velocity profiles to determine the effect of sensor velocity and height above a target on measurement error. The results …


Ball Oscillating Bouncer, Eric Blok, Daniel Altemese, Ryan Nowacki, Maram Qurban Jan 2018

Ball Oscillating Bouncer, Eric Blok, Daniel Altemese, Ryan Nowacki, Maram Qurban

Williams Honors College, Honors Research Projects

The purpose of this report is to document the need, objectives, marketing and engineering requirements, as well as validate the design of an autonomous control device capable of continuously bouncing a table tennis ball on a paddle. This includes the design of a self correcting system using lightweight materials, and as few sensors and components as possible to achieve a compact, portable design. To accomplish this, the system is designed to react to a ball falling from as short a distance as 10 centimeters above the paddle, meaning all sensor processing, control processing, and motor drives should be able to …


Strong Stability Of A Class Of Difference Equations Of Continuous Time And Structured Singular Value Problem, Qian Ma, Keqin Gu, Narges Choubedar Jan 2018

Strong Stability Of A Class Of Difference Equations Of Continuous Time And Structured Singular Value Problem, Qian Ma, Keqin Gu, Narges Choubedar

SIUE Faculty Research, Scholarship, and Creative Activity

This article studies the strong stability of scalar difference equations of continuous time in which the delays are sums of a number of independent parameters τi, i = 1, 2, . . . , K. The characteristic quasipolynomial of such an equation is a multilinear function of e−τis. It is known that the characteristic quasipolynomial of any difference equation set in the form of one-delay-per-scalar-channel (ODPSC) model is also in such a multilinear form. However, it is shown in this article that some multilinear forms of quasipolynomials are not characteristic quasipolynomials of any ODPSC difference equation set. The equivalence between …


Discrete-Time Adaptive Control Algorithms For Rejection Of Sinusoidal Disturbances, Mohammadreza Kamaldar Jan 2018

Discrete-Time Adaptive Control Algorithms For Rejection Of Sinusoidal Disturbances, Mohammadreza Kamaldar

Theses and Dissertations--Mechanical Engineering

We present new adaptive control algorithms that address the problem of rejecting sinusoids with known frequencies that act on an unknown asymptotically stable linear time-invariant system. To achieve asymptotic disturbance rejection, adaptive control algorithms of this dissertation rely on limited or no system model information. These algorithms are developed in discrete time, meaning that the control computations use sampled-data measurements. We demonstrate the effectiveness of algorithms via analysis, numerical simulations, and experimental testings. We also present extensions to these algorithms that address systems with decentralized control architecture and systems subject to disturbances with unknown frequencies.


Real Time And High Fidelity Quadcopter Tracking System, Tyler Mckay Hall Dec 2017

Real Time And High Fidelity Quadcopter Tracking System, Tyler Mckay Hall

Computer Engineering

This project was conceived as a desired to have an affordable, flexible and physically compact tracking system for high accuracy spatial and orientation tracking. Specifically, this implementation is focused on providing a low cost motion capture system for future research. It is a tool to enable the further creation of systems that would require the use of accurate placement of landing pads, payload acquires and delivery. This system will provide the quadcopter platform a coordinate system that can be used in addition to GPS.

Field research with quadcopter manufacturers, photographers, agriculture and research organizations were contact and interviewed for information …


Flexible Custom Electric Skateboard, Caleb Adam Kelsay Dec 2017

Flexible Custom Electric Skateboard, Caleb Adam Kelsay

Electrical Engineering

At Cal Poly traveling long distances only accessible by foot such as across campus or from the car park to class can be tiring and time-consuming. While not physically demanding, the trek consumes time in our tight college life schedule. To improve our time efficiency this project provides a relatively lightweight, powered solution to quickly and effectively travel long distances while maintaining full control and safety even on hills, a current limitation of traditional skateboards.

This electric skateboard includes the battery capacity to travel all around campus on a single charge with a compact and flexible skateboard design that provides …


Hybrid Attitude Control And Estimation On So(3), Soulaimane Berkane Nov 2017

Hybrid Attitude Control And Estimation On So(3), Soulaimane Berkane

Electronic Thesis and Dissertation Repository

This thesis presents a general framework for hybrid attitude control and estimation design on the Special Orthogonal group SO(3). First, the attitude stabilization problem on SO(3) is considered. It is shown that, using a min-switch hybrid control strategy designed from a family of potential functions on SO(3), global exponential stabilization on SO(3) can be achieved when this family of potential functions satisfies certain properties. Then, a systematic methodology to construct these potential functions is developed. The proposed hybrid control technique is applied to the attitude tracking problem for rigid body systems. A smoothing mechanism is proposed to filter out the …


A Magnetic Resonance Compatible Knee Extension Ergometer, Youssef Jaber Jul 2017

A Magnetic Resonance Compatible Knee Extension Ergometer, Youssef Jaber

Masters Theses

The product of this thesis aims to enable the study of the biochemical and physical dynamics of the lower limbs at high levels of muscle tension and fast contraction speeds. This is accomplished in part by a magnetic resonance (MR) compatible ergometer designed to apply a load as a torque of up to 420 Nm acting against knee extension at speeds as high as 4.7 rad/s. The system can also be adapted to apply the load as a force of up to 1200 N acting against full leg extension. The ergometer is designed to enable the use of magnetic resonance …


Mini High Temperature Test Unit Final Design Report, Kevin Liu, Juan P. Castillo Jun 2017

Mini High Temperature Test Unit Final Design Report, Kevin Liu, Juan P. Castillo

Mechanical Engineering

Lawrence Livermore National Laboratory has invested considerable effort to develop new standard for nuclear grade HEPA filters that can withstand high temperatures along with methods to optimally test not only the experimental filter media, but also new frame seals and media binders. Therefore, LLNL in collaboration with Cal Poly has designed and built a Mini High Temperature Testing Unit (MHTTU) to recreate conditions observed during a fire and to test different materials in an effective, inexpensive, regulated and reliable method. The existing prototype was unable to achieve the ideal testing conditions of 1000°F air at the low flow rates of …


Automation In Entertainment: Concept, Design, And Application, Ryan Thally May 2017

Automation In Entertainment: Concept, Design, And Application, Ryan Thally

Undergraduate Honors Theses

The focus of this thesis is to explore the automation technology used in the modern entertainment industry. Upon completion of my thesis, I will deliver a working prototype of the chosen technology and present its capabilities in a choreographed show.


P26. Global Exponential Stabilization On So(3), Soulaimane Berkane Mar 2017

P26. Global Exponential Stabilization On So(3), Soulaimane Berkane

Western Research Forum

Global Exponential Stabilization on SO(3)


Model-Based Control Of Hybrid Electric Powertrains Integrated With Low Temperature Combustion Engines, Ali Soloukmofrad Jan 2017

Model-Based Control Of Hybrid Electric Powertrains Integrated With Low Temperature Combustion Engines, Ali Soloukmofrad

Dissertations, Master's Theses and Master's Reports

Powertrain electrification including hybridizing advanced combustion engines is a viable cost-effective solution to improve fuel economy of vehicles. This will provide opportunity for narrow-range high-efficiency combustion regimes to be able to operate and consequently improve vehicle’s fuel conversion efficiency, compared to conventional hybrid electric vehicles (HEV)s. Low temperature combustion (LTC) engines offer the highest peak brake thermal efficiency reported in literature, but these engines have narrow operating range. In addition, LTC engines have ultra-low soot and nitrogen oxides (NOx) emissions, compared to conventional compression ignition and spark ignition (SI) engines. This dissertation concentrates on integrating the LTC engines (i) in …


Control Of A Powered Ankle-Foot Prosthesis: From Perception To Impedance Modulation, Guilherme Aramizo Ribeiro Jan 2017

Control Of A Powered Ankle-Foot Prosthesis: From Perception To Impedance Modulation, Guilherme Aramizo Ribeiro

Dissertations, Master's Theses and Master's Reports

Active ankle prostheses controllers are demonstrating gaining smart features to improve the safety and comfort offor users. The perception of user intention to modulate the ankle dynamics is a well-known example of such feature. But not much work focused on the perception of the environment, nor how the environment should be included in the mechanical design and control of the prosthesisprostheses. The proposed work aims to improve the feasibility of integrate the environment perception integration intoto the prostheses controllersler, and to define the desired ankle dynamics, as mechanical impedance, duringof the human walk on different environmental settings. As a preliminary …


Model-Based Control Of An Rcci Engine, Akshat Abhay Raut Jan 2017

Model-Based Control Of An Rcci Engine, Akshat Abhay Raut

Dissertations, Master's Theses and Master's Reports

Reactivity controlled compression ignition (RCCI) is a combustion strategy that offers high fuel conversion efficiency and near zero emissions of NOx and soot which can help in improving fuel economy in mobile and stationary internal combustion engine (ICE) applications and at the same time lower engine-out emissions. One of the main challenges associated with RCCI combustion is the difficulty in simultaneously controlling combustion phasing, engine load, and cyclic variability during transient engine operations.

This thesis focuses on developing model based controllers for cycle-to-cycle combustion phasing and load control during transient operations. A control oriented model (COM) is developed by using …


Using Lower Extremity Muscle Activations To Estimate Human Ankle Impedance In The External-Internal Direction, Lauren N. Knop Jan 2017

Using Lower Extremity Muscle Activations To Estimate Human Ankle Impedance In The External-Internal Direction, Lauren N. Knop

Dissertations, Master's Theses and Master's Reports

For millions of people, mobility has been afflicted by lower limb amputation. Lower extremity prostheses have been used to improve the mobility of an amputee; however, they often require additional compensation from other joints and do not allow for natural maneuverability. To improve upon the functionality of ankle-foot prostheses, it is necessary to understand the role of different muscle activations in the modulation of mechanical impedance of a healthy human ankle. This report presents the results of using artificial neural networks (ANN) to determine the functional relationship between lower extremity electromyography (EMG) signals and ankle impedance in the transverse plane. …


Autonomous Quadrotor Collision Avoidance And Destination Seeking In A Gps-Denied Environment, Thomas C. Kirven Jan 2017

Autonomous Quadrotor Collision Avoidance And Destination Seeking In A Gps-Denied Environment, Thomas C. Kirven

Theses and Dissertations--Mechanical Engineering

This thesis presents a real-time autonomous guidance and control method for a quadrotor in a GPS-denied environment. The quadrotor autonomously seeks a destination while it avoids obstacles whose shape and position are initially unknown. We implement the obstacle avoidance and destination seeking methods using off-the-shelf sensors, including a vision-sensing camera. The vision-sensing camera detects the positions of points on the surface of obstacles. We use this obstacle position data and a potential-field method to generate velocity commands. We present a backstepping controller that uses the velocity commands to generate the quadrotor's control inputs. In indoor experiments, we demonstrate that the …


Advances In Multi-Agent Flocking: Continuous-Time And Discrete-Time Algorithms, Brandon Wellman Jan 2017

Advances In Multi-Agent Flocking: Continuous-Time And Discrete-Time Algorithms, Brandon Wellman

Theses and Dissertations--Mechanical Engineering

We present multi-agent control methods that address flocking in continuous-time and discrete-time settings. The method is decentralized, that is, each agents controller relies on local sensing to determine the relative positions and velocities of nearby agents. In the continuous-time setting, each agent has double-integrator dynamics. In the discrete-time setting, each agent has the discrete-time double-integrator dynamics obtained by sampling the continuous-time double integrator and applying a zero-order hold on the control input. We demonstrate using analysis, numerical simulations, and experimental demonstrations that agents using the flocking methods converge to flocking formations and follow the centralized leader (if applicable).


Active Management Assistant System For Embry-Riddle Ecocar 3 Hybrid Supervisory Control System, Matthew Nelson, Blair Cutting, Michael J. Aleardi Dec 2016

Active Management Assistant System For Embry-Riddle Ecocar 3 Hybrid Supervisory Control System, Matthew Nelson, Blair Cutting, Michael J. Aleardi

Student Works

The Embry-Riddle EcoCAR 3 team is developing a prototype hybrid Chevrolet Camaro utilizing a customized vehicle powertrain controller. This controller is serving to ensure system safety, vehicle operation, and consumer drivability while also incorporating advanced driving aids to achieve both the desired performance levels one expects from a Camaro as well as vehicle efficiency. This vehicle must reach the team set vehicle technical specifications of a 4.9 second 0 to 60 time while maintaining a 53 miles per gallon gasoline equivalence rating.

In order to reach the efficiency goal, the team is developing an Active Management Assistance System utilizing computer …


Delay-Independent Stability Analysis Of Linear Time-Delay Systems Based On Frequency, Xianwei Li, Huijun Gao, Keqin Gu Aug 2016

Delay-Independent Stability Analysis Of Linear Time-Delay Systems Based On Frequency, Xianwei Li, Huijun Gao, Keqin Gu

SIUE Faculty Research, Scholarship, and Creative Activity

This paper studies strong delay-independent stability of linear time-invariant systems. It is known that delay-independent stability of time-delay systems is equivalent to some frequency-dependent linear matrix inequalities. To reduce or eliminate conservatism of stability criteria, the frequency domain is discretized into several sub-intervals, and piecewise constant Lyapunov matrices are employed to analyze the frequency-dependent stability condition. Applying the generalized Kalman–Yakubovich–Popov lemma, new necessary and sufficient criteria are then obtained for strong delay-independent stability of systems with a single delay. The effectiveness of the proposed method is illustrated by a numerical example.


Hybrid Magneto-Rheological Actuators For Human Friendly Robotic Manipulators, Masoud Moghani Jul 2016

Hybrid Magneto-Rheological Actuators For Human Friendly Robotic Manipulators, Masoud Moghani

Electronic Thesis and Dissertation Repository

In recent years, many developments in the field of the physical human robot interaction (pHRI) have been witnessed and significant attentions have been given to the subject of safety within the interactive environments. Ensuring the safety has led to the design of the robots that are physically unable to hurt humans. However, Such systems commonly suffer from the safety-performance trade-off. Magneto-Rheological (MR) fluids are a special class of fluids that exhibit variable yield stress with respect to an applied magnetic field. Devices developed with such fluids are known to provide the prerequisite requirements of intrinsic safe actuation while maintaining the …


A Haptic Surface Robot Interface For Large-Format Touchscreen Displays, Mark Price Jul 2016

A Haptic Surface Robot Interface For Large-Format Touchscreen Displays, Mark Price

Masters Theses

This thesis presents the design for a novel haptic interface for large-format touchscreens. Techniques such as electrovibration, ultrasonic vibration, and external braked devices have been developed by other researchers to deliver haptic feedback to touchscreen users. However, these methods do not address the need for spatial constraints that only restrict user motion in the direction of the constraint. This technology gap contributes to the lack of haptic technology available for touchscreen-based upper-limb rehabilitation, despite the prevalent use of haptics in other forms of robotic rehabilitation. The goal of this thesis is to display kinesthetic haptic constraints to the touchscreen user …


Cal Poly Supermileage Electronic Fuel Injection, Alexander Pink Jun 2016

Cal Poly Supermileage Electronic Fuel Injection, Alexander Pink

Electrical Engineering

Cal Poly Supermileage is a student-run engineering club that builds prototype gasoline vehicles optimized maximum fuel-efficiency. To power their vehicles, the Supermileage team makes use of single-cylinder, 4-stroke, electronically fuel-injected (EFI) gasoline engines. This report details the development, iterative design & test cycles, and integration of an EFI system for the Supermileage club. This project develops an EFI system that interfaces to the most common types of sensors found in the low-power Supermileage-range of engines, including throttle-position sensors, manifold absolute pressure sensors, gear-tooth hall-effect sensors, variable-reluctance position sensors, engine coolant temperature sensors, intake air temperature sensors, and exhaust oxygen sensors. …


How Can Occupancy Modeling And Occupancy Sensors Reduce Energy Usage In Academic Buildings: An Application Approach To University Of San Francisco, Paloma R. Duong May 2016

How Can Occupancy Modeling And Occupancy Sensors Reduce Energy Usage In Academic Buildings: An Application Approach To University Of San Francisco, Paloma R. Duong

Master's Projects and Capstones

Buildings are amongst the highest energy consumers relative to industry and transportation. They account for 40% of the world’s energy consumption, due to the need for lighting, equipment, heating, cooling and ventilation. Academic buildings are multi-purpose buildings that create a challenge on energy reduction. Most are old and have fixed occupancy schedules, resulting in high energy consumption because these buildings experience significant occupancy variation throughout the day. Five academic buildings were analyzed; their building information, energy consumption data and methods to project energy savings have been analyzed. The case studies presented different strategies on predicting energy savings, but these have …


Predictive Control Of Power Grid-Connected Energy Systems Based On Energy And Exergy Metrics, Meysam Razmara Jan 2016

Predictive Control Of Power Grid-Connected Energy Systems Based On Energy And Exergy Metrics, Meysam Razmara

Dissertations, Master's Theses and Master's Reports

Building and transportation sectors account for 41% and 27% of total energy consumption in the US, respectively. Designing smart controllers for Heating, Ventilation and Air-Conditioning (HVAC) systems and Internal Combustion Engines (ICEs) can play a key role in reducing energy consumption. Exergy or availability is based on the First and Second Laws of Thermodynamics and is a more precise metric to evaluate energy systems including HVAC and ICE systems. This dissertation centers on development of exergy models and design of model-based controllers based on exergy and energy metrics for grid-connected energy systems including HVAC and ICEs.

In this PhD dissertation, …


Inter-Row Robot Navigation Using 1d Ranging Sensors, Tyler A. Troyer, Santosh Pitla, Ethan Nutter Jan 2016

Inter-Row Robot Navigation Using 1d Ranging Sensors, Tyler A. Troyer, Santosh Pitla, Ethan Nutter

Biological Systems Engineering: Papers and Publications

In this paper a fuzzy logic navigation controller for an inter-row agricultural robot is developed and evaluated in laboratory settings. The controller receives input from one-dimensional (1D) ranging sensors on the robotic platform, and operated on ten fuzzy rules for basic row-following behavior. The control system was implemented on basic hardware for proof of concept and operated on a commonly available microcontroller development platform and open source software libraries. The robot platform used for experimentation was a small tracked vehicle with differential steering control. Fuzzy inferencing and defuzzification, step response and cross track error were obtained from the test conducted …


Comparing Various Hardware/Software Solutions And Conversion Methods For Controller Area Network (Can) Bus Data Collection, Samuel E. Marx, Joe D. Luck, Santosh Pitla, Roger M. Hoy Jan 2016

Comparing Various Hardware/Software Solutions And Conversion Methods For Controller Area Network (Can) Bus Data Collection, Samuel E. Marx, Joe D. Luck, Santosh Pitla, Roger M. Hoy

Biological Systems Engineering: Papers and Publications

Various hardware and software solutions exist for collecting Controller Area Network (CAN) bus data. Digital data accuracy could vary based upon different data logging methods (e.g., hardware/software timing, processor timing, etc.). CAN bus data were collected from agricultural tractors using multiple data acquisition solutions to quantify differences among collection methods and demonstrate potential data accumulation rates. Two types of data were observed for this study. The first, CAN bus frame data, represents data collected for each line of hex data sent from an ECU. One issue with frame data is the resulting large file sizes, therefore a second logging format …


Electromechanics Of An Ocean Current Turbine, Vasileios Tzelepis Dec 2015

Electromechanics Of An Ocean Current Turbine, Vasileios Tzelepis

University of New Orleans Theses and Dissertations

The development of a numeric simulation for predicting the performance of an Ocean Current Energy Conversion System is presented in this thesis along with a control system development using a PID controller for the achievement of specified rotational velocity set-points. In the beginning, this numeric model is implemented in MATLAB/Simulink® and it is used to predict the performance of a three phase squirrel single-cage type induction motor/generator in two different cases. The first case is a small 3 meter rotor diameter, 20 kW ocean current turbine with fixed pitch blades, and the second case a 20 …


Developing And Testing An Anguilliform Robot Swimming With Theoretically High Hydrodynamic Efficiency, John B. Potts Iii Dec 2015

Developing And Testing An Anguilliform Robot Swimming With Theoretically High Hydrodynamic Efficiency, John B. Potts Iii

University of New Orleans Theses and Dissertations

An anguilliform swimming robot replicating an idealized motion is a complex marine vehicle necessitating both a theoretical and experimental analysis to completely understand its propulsion characteristics. The ideal anguilliform motion within is theorized to produce ``wakeless'' swimming (Vorus, 2011), a reactive swimming technique that produces thrust by accelerations of the added mass in the vicinity of the body. The net circulation for the unsteady motion is theorized to be eliminated.

The robot was designed to replicate the desired, theoretical motion by applying control theory methods. Independent joint control was used due to hardware limitations. The fluid velocity vectors in the …


Umass Amherst Green Building Guidelines 2013, Ludmilla Pavlova-Gillham, Ted Mendoza, Ezra Small, Patricia O'Flaherty, Nariman Mostafavi, Mohamed Farzinmoghadam, Somayeh Tabatabaee Pozveh Oct 2015

Umass Amherst Green Building Guidelines 2013, Ludmilla Pavlova-Gillham, Ted Mendoza, Ezra Small, Patricia O'Flaherty, Nariman Mostafavi, Mohamed Farzinmoghadam, Somayeh Tabatabaee Pozveh

Ludmilla D Pavlova

Facilities & Campus Services, Sustainable UMass and Campus Planning support sustainability and energy conservation initiatives by providing in-house resources to campus staff as well as designers and contractors working with the University. The UMass Amherst Green Building Guidelines provide a framework for approaching new construction and major renovation projects at UMass Amherst that are undergoing LEED certification by focusing the conversation on green building aspects that are most important to the campus. They are intended to be the beginning of a dynamic conversation between designers, environmental consultants and constructors, university stakeholders, and users of new high performance buildings.


Umass Amherst Building Measurement, Verification, Coordination And Template Plan, Nariman Mostafavi, Ted Mendoza, Jeffrey G. Quackenbush, Sandy J. Beauregard, Jason J. Burbank, Mohamad Farzinmoghadam, Ludmilla Pavlova-Gillham, Kylie A. Landrey, Patricia O'Flaherty Oct 2015

Umass Amherst Building Measurement, Verification, Coordination And Template Plan, Nariman Mostafavi, Ted Mendoza, Jeffrey G. Quackenbush, Sandy J. Beauregard, Jason J. Burbank, Mohamad Farzinmoghadam, Ludmilla Pavlova-Gillham, Kylie A. Landrey, Patricia O'Flaherty

Ludmilla D Pavlova

Facilities & Campus Services, Sustainable UMass and Campus Planning support sustainability and energy conservation initiatives by providing in-house resources to campus staff as well as designers and contractors working with the University. The UMass Amherst Building Measurement, Verification, Coordination and Template Plan was begun in 2013 and finalized in 2015 as a resource to project teams that undertake the measurement and verification of building systems during the first year of occupancy of a new building and renovation project, particularly projects undergoing LEED certification.