Open Access. Powered by Scholars. Published by Universities.®

Controls and Control Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Controls and Control Theory

Evaluating Eeg–Emg Fusion-Based Classification As A Method For Improving Control Of Wearable Robotic Devices For Upper-Limb Rehabilitation, Jacob G. Tryon Aug 2023

Evaluating Eeg–Emg Fusion-Based Classification As A Method For Improving Control Of Wearable Robotic Devices For Upper-Limb Rehabilitation, Jacob G. Tryon

Electronic Thesis and Dissertation Repository

Musculoskeletal disorders are the biggest cause of disability worldwide, and wearable mechatronic rehabilitation devices have been proposed for treatment. However, before widespread adoption, improvements in user control and system adaptability are required. User intention should be detected intuitively, and user-induced changes in system dynamics should be unobtrusively identified and corrected. Developments often focus on model-dependent nonlinear control theory, which is challenging to implement for wearable devices.

One alternative is to incorporate bioelectrical signal-based machine learning into the system, allowing for simpler controller designs to be augmented by supplemental brain (electroencephalography/EEG) and muscle (electromyography/EMG) information. To extract user intention better, sensor …


Project Khepri: Mining Asteroid Bennu For Water, Erika Frost, Gowtham Boyala, Adam Gremm, Ahmet Gungor, Amirhossein Taghipour, Massimo Biella, Jiawei "Jackson" Qiu, Athip Thirupathi Raj, Arjun Chhabra, Adam Gee, Saanjali Maharaj, Erin Richardson, Julia Empey, Haidar Ali Abdul-Nabi, Lindsay Richards, Ariyaan Talukder, Aaron Groh, Brie Miklaucic, Jd Carlson, Kristina Kim, Maverick Cue Aug 2022

Project Khepri: Mining Asteroid Bennu For Water, Erika Frost, Gowtham Boyala, Adam Gremm, Ahmet Gungor, Amirhossein Taghipour, Massimo Biella, Jiawei "Jackson" Qiu, Athip Thirupathi Raj, Arjun Chhabra, Adam Gee, Saanjali Maharaj, Erin Richardson, Julia Empey, Haidar Ali Abdul-Nabi, Lindsay Richards, Ariyaan Talukder, Aaron Groh, Brie Miklaucic, Jd Carlson, Kristina Kim, Maverick Cue

Undergraduate Student Research Internships Conference

Deep space asteroid mining presents the opportunity for the collection of critical resources required to establish a cis-lunar infrastructure. In specific, the Project Khepri team has focused on the collection of water from asteroid Bennu. This water has the potential to provide a source of clean-energy propellant as well as an essential consumable for humans or agriculture on crewed trips to the Moon or Mars. This would avoid the high costs of launching from Earth - making it a highly desirable element for the future of cis-lunar infrastructure. The OSIRIS-REx mission provided a complete survey of asteroid Bennu and is …


Development Of A Wearable Haptic Feedback Device For Upper Limb Prosthetics Through Sensory Substitution, Marco B.S. Gallone May 2021

Development Of A Wearable Haptic Feedback Device For Upper Limb Prosthetics Through Sensory Substitution, Marco B.S. Gallone

Electronic Thesis and Dissertation Repository

Haptics can enable a direct communication pipeline between the artificial limb and the brain; adding haptic sensory feedback for prosthesis wearers is believed to improve operation without drawing too much of the user's attention. Through neuroplasticity, the brain can become more cognizant of the information delivered through the skin and may eventually interpret it as inherently as other natural senses. In this thesis, a wearable haptic feedback device (WHFD) is developed to communicate prosthesis sensory information. A 14-week, 6-stage, between subjects study was created to investigate the learning trajectory as participants were stimulated with haptic patterns conveying joint proprioception. 37 …


Design, Development, And Evaluation Of Customized Electronics For Controlling A 5-Dof Magneto-Rheological Actuator Collaborative Robot, Ziqi Yang Jan 2021

Design, Development, And Evaluation Of Customized Electronics For Controlling A 5-Dof Magneto-Rheological Actuator Collaborative Robot, Ziqi Yang

Electronic Thesis and Dissertation Repository

In recent years, Magneto-Rheological (MR) fluids has been used in various fields such as robotics, automotive, aerospace, etc. The most common use of the MR fluids is within a clutch-like mechanism, namely an MR clutch. When mechanical input is coupled to the input part of the MR clutch, the MR clutch provides a means of delivering this mechanical input to its output, through the MR fluids. The combination of the mechanical input device and the MR clutch is called an MR actuator. The MR actuator features inherently compliance owing to the characteristic of the MR fluids while also offering higher …


A Wearable Mechatronic Device For Hand Tremor Monitoring And Suppression: Development And Evaluation, Yue Zhou Dec 2019

A Wearable Mechatronic Device For Hand Tremor Monitoring And Suppression: Development And Evaluation, Yue Zhou

Electronic Thesis and Dissertation Repository

Tremor, one of the most disabling symptoms of Parkinson's disease (PD), significantly affects the quality of life of the individuals who suffer from it. These people live with difficulties with fine motor tasks, such as eating and writing, and suffer from social embarrassment. Traditional medicines are often ineffective, and surgery is highly invasive and risky. The emergence of wearable technology facilitates an externally worn mechatronic tremor suppression device as a potential alternative approach for tremor management. However, no device has been developed for the suppression of finger tremor that has been validated on a human.

It has been reported in …


Hybrid Attitude Control And Estimation On So(3), Soulaimane Berkane Nov 2017

Hybrid Attitude Control And Estimation On So(3), Soulaimane Berkane

Electronic Thesis and Dissertation Repository

This thesis presents a general framework for hybrid attitude control and estimation design on the Special Orthogonal group SO(3). First, the attitude stabilization problem on SO(3) is considered. It is shown that, using a min-switch hybrid control strategy designed from a family of potential functions on SO(3), global exponential stabilization on SO(3) can be achieved when this family of potential functions satisfies certain properties. Then, a systematic methodology to construct these potential functions is developed. The proposed hybrid control technique is applied to the attitude tracking problem for rigid body systems. A smoothing mechanism is proposed to filter out the …


P26. Global Exponential Stabilization On So(3), Soulaimane Berkane Mar 2017

P26. Global Exponential Stabilization On So(3), Soulaimane Berkane

Western Research Forum

Global Exponential Stabilization on SO(3)


Hybrid Magneto-Rheological Actuators For Human Friendly Robotic Manipulators, Masoud Moghani Jul 2016

Hybrid Magneto-Rheological Actuators For Human Friendly Robotic Manipulators, Masoud Moghani

Electronic Thesis and Dissertation Repository

In recent years, many developments in the field of the physical human robot interaction (pHRI) have been witnessed and significant attentions have been given to the subject of safety within the interactive environments. Ensuring the safety has led to the design of the robots that are physically unable to hurt humans. However, Such systems commonly suffer from the safety-performance trade-off. Magneto-Rheological (MR) fluids are a special class of fluids that exhibit variable yield stress with respect to an applied magnetic field. Devices developed with such fluids are known to provide the prerequisite requirements of intrinsic safe actuation while maintaining the …


Design Of A Haptic Interface For Medical Applications Using Magneto-Rheological Fluid Based Actuators, Nima Najmaei Dec 2014

Design Of A Haptic Interface For Medical Applications Using Magneto-Rheological Fluid Based Actuators, Nima Najmaei

Electronic Thesis and Dissertation Repository

This thesis reports on the design, construction, and evaluation of a prototype two degrees-of-freedom (DOF) haptic interface, which takes advantage of Magneto-Rheological Fluid (MRF) based clutches for actuation. Haptic information provides important cues in teleoperated systems and enables the user to feel the interaction with a remote or virtual environment during teleoperation. The two main objectives in designing a haptic interface are stability and transparency. Indeed, deficiencies in these factors in haptics-enabled telerobotic systems has the introduction of haptics in medical environments where safety and reliability are prime considerations. An actuator with poor dynamics, high inertia, large size, and heavy …


A Cfd Assisted Control System Design For Supercritical Water Cooled Reactor, Rohit V. Maitri Jul 2014

A Cfd Assisted Control System Design For Supercritical Water Cooled Reactor, Rohit V. Maitri

Electronic Thesis and Dissertation Repository

In this study, the methodology to construct a control system based on computational fluid dynamics (CFD) simulations is developed for supercritical water cooled reactor (SCWR). The CFD model using Reynolds Stress Model (RSM) and k-w SST model is validated with the experimental cases of steady state and vertically up flowing supercritical water in circular tubes for normal heat transfer and deteriorated heat transfer (DHT) cases. This model is extended to simulate the transient thermal-hydraulic behaviour of supercritical fluid flow and heat transfer, and the results are also compared with the 1-D numerical model, THRUST. The DHT phenomenon is investigated using …


Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena Oct 2012

Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena

Electronic Thesis and Dissertation Repository

In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation …


Preoperative Planning Of Robotics-Assisted Minimally Invasive Cardiac Surgery Under Uncertainty, Hamidreza Azimian Aug 2012

Preoperative Planning Of Robotics-Assisted Minimally Invasive Cardiac Surgery Under Uncertainty, Hamidreza Azimian

Electronic Thesis and Dissertation Repository

In this thesis, a computational framework for patient-specific preoperative planning of Robotics-Assisted Minimally Invasive Cardiac Surgery (RAMICS) is developed. It is expected that preoperative planning of RAMICS will improve the rate of success by considering robot kinematics, patient-specific thoracic anatomy, and procedure-specific intraoperative conditions. Given the significant anatomical features localized in the preoperative computed tomography images of a patient's thorax, port locations and robot orientations (with respect to the patient's body coordinate frame) are determined to optimize characteristics such as dexterity, reachability, tool approach angles and maneuverability. In this thesis, two approaches for preoperative planning of RAMICS are proposed that …