Open Access. Powered by Scholars. Published by Universities.®

Controls and Control Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 121 - 150 of 173

Full-Text Articles in Controls and Control Theory

Simulation, Control And Testing Of Advanced Hydraulic Hybrid Transmissions, Italo M. Ramos, Monika Ivantysynova, Michael Sprengel Aug 2015

Simulation, Control And Testing Of Advanced Hydraulic Hybrid Transmissions, Italo M. Ramos, Monika Ivantysynova, Michael Sprengel

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hydraulic hybrids transmissions have the potentially to substantially improve the fuel efficiency of on road vehicles. In fact recent studies have demonstrated that this technology can improve fuel economy by upwards of 30% over competing electric hybrids. To further improve the fuel economy and performance of this technology a novel blended hydraulic hybrid transmission has been constructed at the Maha Fluid Power Research Center. While this novel hybrid architecture created by the Maha lab has many benefits over conventional systems, there are a number of control challenges present due to several discrete modes of operation. And though improving fuel economy …


A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder Jul 2015

A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder

Masters Theses

This thesis presents a new mechanical design for an exoskeleton actuator to power the sagittal plane motion in the human hip. The device uses a DC motor to drive a Scotch yoke mechanism and series elasticity to take advantage of the cyclic nature of human gait and to reduce the maximum power and control requirements of the exoskeleton. The Scotch yoke actuator creates a position-dependent transmission that varies between 4:1 and infinity, with the peak transmission ratio aligned to the peak torque periods of the human gait cycle. Simulation results show that both the peak and average motor torque can …


Forest Sign Maker, Victor Espinosa Iii, Kevin Ly, Lisa Yip Jun 2015

Forest Sign Maker, Victor Espinosa Iii, Kevin Ly, Lisa Yip

Mechanical Engineering

Executive Summary:

The Inyo National Forest is arguably one of the most beautiful locations in California, containing natural masterpieces such as Mount Whitney and the Ancient Bristlecone Pine Forest. Despite its magnificence, the Inyo National Forest can be a treacherous region. The Friends of the Inyo take pride in being able to facilitate the viewing experience for all outdoorsmen by maintaining the mountain trails, which includes providing adequate trail signage.

Unfortunately, there is a fundamental issue with the recent state of trail signage in the Inyo National Forest: the rate at which signs are being vandalized or naturally destroyed is …


Telepresence: Design, Implementation And Study Of An Hmd-Controlled Avatar With A Mechatronic Approach, Darren Michael Chan Jun 2015

Telepresence: Design, Implementation And Study Of An Hmd-Controlled Avatar With A Mechatronic Approach, Darren Michael Chan

Master's Theses

Telepresence describes technologies that allow users to remotely experience the sensation of being present at an event without being physically present. An avatar exists to represent the user whilst in a remote location and is tasked to collect stimuli from its immediate surroundings to be delivered to the user for consumption. With the advent of recent developments in Virtual Reality technology, viz., head-mounted displays (HMDs), new possibilities have been enabled in the field of Telepresence. The main focus of this thesis is to develop a solution for visual Telepresence, where an HMD is used to control the direction of a …


Dynamic Simulation And Neuromuscular Control Of Movement: Applications For Predictive Simulations Of Balance Recovery, Misagh Mansouri Boroujeni May 2015

Dynamic Simulation And Neuromuscular Control Of Movement: Applications For Predictive Simulations Of Balance Recovery, Misagh Mansouri Boroujeni

Doctoral Dissertations

Balance is among the most challenging tasks for patients with movement disorders. Study and treatment of these disorders could greatly benefit from combined software tools that offer better insights into neuromuscular biomechanics, and predictive capabilities for optimal surgical and rehabilitation treatment planning. A platform was created to combine musculoskeletal modeling, closed-loop forward dynamic simulation, optimization techniques, and neuromuscular control system design. Spinal (stretch-reflex) and supraspinal (operational space task-based) controllers were developed to test simulation-based hypotheses related to balance recovery and movement control. A corrective procedure (rectus femoris transfer surgery) was targeted for children experiencing stiff-knee gait and how this procedure …


Umass Amherst Building Measurement, Verification, Coordination And Template Plan, Nariman Mostafavi, Ted Mendoza, Jeffrey G. Quackenbush, Sandy J. Beauregard, Jason J. Burbank, Mohamad Farzinmoghadam, Ludmilla Pavlova-Gillham, Kylie A. Landrey, Patricia O'Flaherty Jan 2015

Umass Amherst Building Measurement, Verification, Coordination And Template Plan, Nariman Mostafavi, Ted Mendoza, Jeffrey G. Quackenbush, Sandy J. Beauregard, Jason J. Burbank, Mohamad Farzinmoghadam, Ludmilla Pavlova-Gillham, Kylie A. Landrey, Patricia O'Flaherty

Campus Planning Reports and Plans

Facilities & Campus Services, Sustainable UMass and Campus Planning support sustainability and energy conservation initiatives by providing in-house resources to campus staff as well as designers and contractors working with the University. The UMass Amherst Building Measurement, Verification, Coordination and Template Plan was begun in 2013 and finalized in 2015 as a resource to project teams that undertake the measurement and verification of building systems during the first year of occupancy of a new building and renovation project, particularly projects undergoing LEED certification.


Increasing Efficiency Of Thermal Desalination, Jarrod A. Edwards, Mackinzie Washington, Chan Jung, Ben Garrison Jan 2015

Increasing Efficiency Of Thermal Desalination, Jarrod A. Edwards, Mackinzie Washington, Chan Jung, Ben Garrison

Chancellor’s Honors Program Projects

No abstract provided.


Development And Operation Of A Mobile Test Facility For Education, Christopher Davis Jan 2015

Development And Operation Of A Mobile Test Facility For Education, Christopher Davis

Dissertations, Master's Theses and Master's Reports

The automotive industry saw a large shift towards vehicle electrification after the turn of the century. It became necessary to ensure that new and existing engineers were qualified to design and calibrate these new systems. To ensure this training, Michigan Tech received a grant to develop a curriculum based around vehicle electrification. As part of this agenda, the Michigan Tech Mobile Laboratory was developed to provide hands-on training for professional engineers and technicians in hybrid electric vehicles and vehicle electrification. The Mobile Lab has since then increased the scope of the delivered curriculum to include other automotive areas and even …


Design Of A Haptic Interface For Medical Applications Using Magneto-Rheological Fluid Based Actuators, Nima Najmaei Dec 2014

Design Of A Haptic Interface For Medical Applications Using Magneto-Rheological Fluid Based Actuators, Nima Najmaei

Electronic Thesis and Dissertation Repository

This thesis reports on the design, construction, and evaluation of a prototype two degrees-of-freedom (DOF) haptic interface, which takes advantage of Magneto-Rheological Fluid (MRF) based clutches for actuation. Haptic information provides important cues in teleoperated systems and enables the user to feel the interaction with a remote or virtual environment during teleoperation. The two main objectives in designing a haptic interface are stability and transparency. Indeed, deficiencies in these factors in haptics-enabled telerobotic systems has the introduction of haptics in medical environments where safety and reliability are prime considerations. An actuator with poor dynamics, high inertia, large size, and heavy …


Ubot-7: The Design Of A Compliant Dexterous Mobile Manipulator, Jonathan Cummings Nov 2014

Ubot-7: The Design Of A Compliant Dexterous Mobile Manipulator, Jonathan Cummings

Masters Theses

This thesis presents the design of uBot-7, the latest version of a dexterous mobile manipulator. This platform has been iteratively developed to realize a high performance-to-cost dexterous whole body manipulator with respect to mobile manipulation. The semi-anthropomorphic design of the uBot is a demonstrated and functional research platform for developing advanced autonomous perception, manipulation, and mobility tasks. The goal of this work is to improve the uBot’s ability to sense and interact with its environment in order to increase the platforms capability to operate dexterously, through the incorporation of joint torque feedback, and safely, through the implementation of passive and …


A Cfd Assisted Control System Design For Supercritical Water Cooled Reactor, Rohit V. Maitri Jul 2014

A Cfd Assisted Control System Design For Supercritical Water Cooled Reactor, Rohit V. Maitri

Electronic Thesis and Dissertation Repository

In this study, the methodology to construct a control system based on computational fluid dynamics (CFD) simulations is developed for supercritical water cooled reactor (SCWR). The CFD model using Reynolds Stress Model (RSM) and k-w SST model is validated with the experimental cases of steady state and vertically up flowing supercritical water in circular tubes for normal heat transfer and deteriorated heat transfer (DHT) cases. This model is extended to simulate the transient thermal-hydraulic behaviour of supercritical fluid flow and heat transfer, and the results are also compared with the 1-D numerical model, THRUST. The DHT phenomenon is investigated using …


Automated Foosball Table, Jim R. Stefani, Alex J. Herpy, Brett Gordon Jaeger, Kevin S. Haydon, Derek Alan Hamel Jun 2014

Automated Foosball Table, Jim R. Stefani, Alex J. Herpy, Brett Gordon Jaeger, Kevin S. Haydon, Derek Alan Hamel

Mechanical Engineering

This project is the second iteration of an automated foosball table for Yaskawa America as a trade show display. The table is meant to provide an interactive experience which highlights the speed and precision of the Yaskawa hardware. The first iteration of the project was mainly focused on creating the physical hardware for the system and to begin the basic programming for the system. This phase of the project was focused on finalizing the physical hardware of the system, implementing the vision system and to continue the basic programing of the system AI. A third team will be assigned to …


Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young May 2014

Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young

Doctoral Dissertations

In this dissertation, the modeling, analysis and control of a multi-degree of freedom (mdof) robotic fluoroscope was investigated. A prototype robotic fluoroscope exists, and consists of a 3 dof mobile platform with two 2 dof Cartesian manipulators mounted symmetrically on opposite sides of the platform. One Cartesian manipulator positions the x-ray generator and the other Cartesian manipulator positions the x-ray imaging device. The robotic fluoroscope is used to x-ray skeletal joints of interest of human subjects performing natural movement activities. In order to collect the data, the Cartesian manipulators must keep the x-ray generation and imaging devices accurately aligned while …


Applying Spiking Neural Network Simulation To Neuromodulatory Autonomous Robot Control, Cameron Muhammad Jan 2014

Applying Spiking Neural Network Simulation To Neuromodulatory Autonomous Robot Control, Cameron Muhammad

Phi Kappa Phi Research Symposium (2012-2016)

In this paper, simulation of the brain based on an artificial spiking neuron model is used to create a self-learning algorithm. The spiking neuron simulation is used to demonstrate a neuromodulation program in which the reward seeking properties of dopamine, the risk-adverse effects of serotonin, and the attention-focusing effects of the cholinergic and noradrenergic systems are applied to a mobile robotic platform as it moves autonomously throughout an environment. External stimuli is recorded by the program as spiking “events” that result in corresponding amounts of dopamine and serotonin influenced spiking patterns. These spiking patterns affect how the robot adapts to …


Virtualized Welding Based Learning Of Human Welder Behaviors For Intelligent Robotic Welding, Yukang Liu Jan 2014

Virtualized Welding Based Learning Of Human Welder Behaviors For Intelligent Robotic Welding, Yukang Liu

Theses and Dissertations--Electrical and Computer Engineering

Combining human welder (with intelligence and sensing versatility) and automated welding robots (with precision and consistency) can lead to next generation intelligent welding systems. In this dissertation intelligent welding robots are developed by process modeling / control method and learning the human welder behavior.

Weld penetration and 3D weld pool surface are first accurately controlled for an automated Gas Tungsten Arc Welding (GTAW) machine. Closed-form model predictive control (MPC) algorithm is derived for real-time welding applications. Skilled welder response to 3D weld pool surface by adjusting the welding current is then modeled using Adaptive Neuro-Fuzzy Inference System (ANFIS), and compared …


Filtered-Dynamic-Inversion Control For Fixed-Wing Unmanned Aerial Systems, Jon Mullen Jan 2014

Filtered-Dynamic-Inversion Control For Fixed-Wing Unmanned Aerial Systems, Jon Mullen

Theses and Dissertations--Mechanical Engineering

Instrumented umanned aerial vehicles represent a new way of measuring turbulence in the atmospheric boundary layer. However, autonomous measurements require control methods with disturbance-rejection and altitude command-following capabilities. Filtered dynamic inversion is a control method with desirable disturbance-rejection and command-following properties, and this controller requires limited model information. We implement filtered dynamic inversion as the pitch controller in an altitude-hold autopilot. We design and numerically simulate the continuous-time and discrete-time filtered-dynamic-inversion controllers with anti-windup on a nonlinear aircraft model. Finally, we present results from a flight experiment comparing the filtered-dynamic-inversion controller to a classical proportional-integral controller. The experimental results show …


Neuromodulation Based Control Of Autonomous Robots On A Cloud Computing Platform, Cameron Muhammad Jan 2014

Neuromodulation Based Control Of Autonomous Robots On A Cloud Computing Platform, Cameron Muhammad

Electronic Theses and Dissertations

In recent years, the advancement of neurobiologically plausible models and computer networking has resulted in new ways of implementing control systems on robotic platforms. The work presents a control approach based on vertebrate neuromodulation and its implementation on autonomous robots in the open-source, open-access environment of robot operating system (ROS). A spiking neural network (SNN) is used to model the neuromodulatory function for generating context based behavioral responses of the robots to sensory input signals. The neural network incorporates three types of neurons- cholinergic and noradrenergic (ACh/NE) neurons for attention focusing and action selection, dopaminergic (DA) neurons for rewards- and …


Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena Jul 2013

Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena

Abhijit Saxena

In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation …


Design Of An Energy Efficient Virtual End Node Client Using Openadr2.0a And Smap, Kevin Navero Jun 2013

Design Of An Energy Efficient Virtual End Node Client Using Openadr2.0a And Smap, Kevin Navero

BioResource and Agricultural Engineering

Demand Response (DR) describes the set of actions taken to impose a reduction in electrical loads to stabilize the power grid and decrease costs. It is used when power grid emergencies or extremely high demand and congestion, threaten the electricity supply-demand balance. Automated Demand Response (ADR) describes a web-based control system that triggers DR events automatically by signaling other pre-programmed control systems. This project intends to use the OpenADR2.0 specifications provided by the OpenADR Alliance to construct an open source Virtual End Node (VEN) client to retrieve DR signals. The Simple Measurement and Actuation Profile (sMAP) software is also used …


Green Scheduling For Radiant Systems In Buildings, Truong X. Nghiem, Madhur Behl, George J. Pappas, Rahul Mangharam Jan 2013

Green Scheduling For Radiant Systems In Buildings, Truong X. Nghiem, Madhur Behl, George J. Pappas, Rahul Mangharam

Truong X Nghiem

In this report we look at the problem of peak power reduction for buildings with electric radiant floor heating systems. Uncoordinated operation of a multi-zone radiant floor heating system can result in temporally correlated electricity demand surges or peaks in the building’s electricity consumption. As peak power prices are 200-400 times that of the nominal rate, this uncoordinated activity can result in high electricity costs and expensive system operation. We have previously presented green scheduling as an approach for reducing the aggregate peak power consumption in buildings while ensuring that indoor thermal comfort is always maintained. This report extends the …


Umass Amherst Green Building Guidelines 2013, Ludmilla Pavlova-Gillham, Ted Mendoza, Ezra Small, Patricia O'Flaherty, Nariman Mostafavi, Mohamed Farzinmoghadam, Somayeh Tabatabaee Pozveh Jan 2013

Umass Amherst Green Building Guidelines 2013, Ludmilla Pavlova-Gillham, Ted Mendoza, Ezra Small, Patricia O'Flaherty, Nariman Mostafavi, Mohamed Farzinmoghadam, Somayeh Tabatabaee Pozveh

Campus Planning Reports and Plans

Facilities & Campus Services, Sustainable UMass and Campus Planning support sustainability and energy conservation initiatives by providing in-house resources to campus staff as well as designers and contractors working with the University. The UMass Amherst Green Building Guidelines provide a framework for approaching new construction and major renovation projects at UMass Amherst that are undergoing LEED certification by focusing the conversation on green building aspects that are most important to the campus. They are intended to be the beginning of a dynamic conversation between designers, environmental consultants and constructors, university stakeholders, and users of new high performance buildings.


Decentralized Adaptive Control For Uncertain Linear Systems: Techniques With Local Full-State Feedback Or Local Relative-Degree-One Output Feedback, James D. Polston Jan 2013

Decentralized Adaptive Control For Uncertain Linear Systems: Techniques With Local Full-State Feedback Or Local Relative-Degree-One Output Feedback, James D. Polston

Theses and Dissertations--Mechanical Engineering

This thesis presents decentralized model reference adaptive control techniques for systems with full-state feedback and systems with output feedback. The controllers are strictly decentralized, that is, each local controller uses feedback from only local subsystems and no information is shared between local controllers.

The full-state feedback decentralized controller is effective for multi-input systems, where the dynamics matrix and control-input matrix are unknown. The decentralized controller achieves asymptotic stabilization and command following in the presence of sinusoidal disturbances with known spectrum. We present a construction technique of the reference-model dynamics such that the decentralized controller is effective for systems with arbitrarily …


Biogeography-Based Optimization For Hydraulic Prosthetic Knee Control, Tim Wilmot, George Thomas, Berney Montavon, Rick Rarick, Antonie J. Van Den Bogert, Steve Szatmary, Daniel J. Simon, William Smith, Sergey Samorezov Jan 2013

Biogeography-Based Optimization For Hydraulic Prosthetic Knee Control, Tim Wilmot, George Thomas, Berney Montavon, Rick Rarick, Antonie J. Van Den Bogert, Steve Szatmary, Daniel J. Simon, William Smith, Sergey Samorezov

Electrical and Computer Engineering Faculty Publications

We discuss open-loop control development and simulation results for a newly-developed cyber-physical system (CPS) used as a semi-active, above-knee prosthesis. The control signal of our CPS consists of two hydraulic valve settings that control a linear cylinder actuator and provide torque to the prosthetic knee. We develop open-loop control using biogeography-based optimization (BBO), which is a recently developed evolutionary algorithm. The research contributes to the field of cyber-physical systems by showing that it is possible to find effective open-loop control signals for our newly proposed semi-active hydraulic knee prosthesis through a dual-system optimization process which includes both human and robot …


Stochastic Optimal Control In Nonlinear Systems, Celestin Nkundineza Nov 2012

Stochastic Optimal Control In Nonlinear Systems, Celestin Nkundineza

Celestin Nkundineza

Stochastic control is an important area of research in engineering systems that undergo disturbances. Controlling individual states in such systems is critical. The present investigation is concerned with the application of the stochastic optimal control strategy developed by To (2010) and its implementation as well as providing computed results of linear and nonlinear systems under stationary and nonstationary random excitations. In the strategy the feedback matrix is designed based on the achievement of the objectives for individual states in the system through the application of the Lyapunov equation for the system. Each diagonal element in the gain or associated gain …


Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena Oct 2012

Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena

Electronic Thesis and Dissertation Repository

In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation …


Green Scheduling For Radiant Systems In Buildings, Truong X. Nghiem, Madhur Behl, George J. Pappas, Rahul Mangharam Oct 2012

Green Scheduling For Radiant Systems In Buildings, Truong X. Nghiem, Madhur Behl, George J. Pappas, Rahul Mangharam

Madhur Behl

In this report we look at the problem of peak power reduction for buildings with electric radiant floor heating systems. Uncoordinated operation of a multi-zone radiant floor heating system can result in temporally correlated electricity demand surges or peaks in the building’s electricity consumption. As peak power prices are 200-400 times that of the nominal rate, this uncoordinated activity can result in high electricity costs and expensive system operation. We have previously presented green scheduling as an approach for reducing the aggregate peak power consumption in buildings while ensuring that indoor thermal comfort is always maintained. This report extends the …


Green Scheduling For Radiant Systems In Buildings, Truong Nghiem, Madhur Behl, George Pappas, Rahul Mangharam Oct 2012

Green Scheduling For Radiant Systems In Buildings, Truong Nghiem, Madhur Behl, George Pappas, Rahul Mangharam

Rahul Mangharam

In this report we look at the problem of peak power reduction for buildings with electric radiant floor heating systems. Uncoordinated operation of a multi-zone radiant floor heating system can result in temporally correlated electricity demand surges or peaks in the building’s electricity consumption. As peak power prices are 200-400 times that of the nominal rate, this uncoordinated activity can result in high electricity costs and expensive system operation. We have previously presented green scheduling as an approach for reducing the aggregate peak power consumption in buildings while ensuring that indoor thermal comfort is always maintained. This report extends the …


Preoperative Planning Of Robotics-Assisted Minimally Invasive Cardiac Surgery Under Uncertainty, Hamidreza Azimian Aug 2012

Preoperative Planning Of Robotics-Assisted Minimally Invasive Cardiac Surgery Under Uncertainty, Hamidreza Azimian

Electronic Thesis and Dissertation Repository

In this thesis, a computational framework for patient-specific preoperative planning of Robotics-Assisted Minimally Invasive Cardiac Surgery (RAMICS) is developed. It is expected that preoperative planning of RAMICS will improve the rate of success by considering robot kinematics, patient-specific thoracic anatomy, and procedure-specific intraoperative conditions. Given the significant anatomical features localized in the preoperative computed tomography images of a patient's thorax, port locations and robot orientations (with respect to the patient's body coordinate frame) are determined to optimize characteristics such as dexterity, reachability, tool approach angles and maneuverability. In this thesis, two approaches for preoperative planning of RAMICS are proposed that …


Frg Turbojet, Tyler Vitti Jun 2012

Frg Turbojet, Tyler Vitti

Computer Engineering

Members of the Cal Poly SLO campus club FRG work together with students of several different disciplines to build a functional turbojet engine. Engineering approaches include design, fabrication, testing, and computer sensing, control, and integration. The goal of the project is to produce a running turbojet engine monitored and controlled by embedded hardware and specialized PC software. This project is to be used by later groups for further research and development.


Improving Manufacturing Processes Through Energy Monitoring, Andrew Grzelak Apr 2012

Improving Manufacturing Processes Through Energy Monitoring, Andrew Grzelak

Purdue Polytechnic Masters Theses

Energy efficiency and sustainability are very popular topics in the current field of manufacturing. With the increase in use of automation technology as well as the recent growth in the area of energy management, there is much focus on the overall improvement of manufacturing processes. For this research a project was completed to create a system that could improve both process efficiency as well as decrease energy consumption. By taking a look at the machine level energy consumption of an automated piece of manufacturing equipment, by eliminating waste in process, both energy efficiency and operational efficiency can be improved.

Using …