Open Access. Powered by Scholars. Published by Universities.®

Controls and Control Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 151 - 173 of 173

Full-Text Articles in Controls and Control Theory

Sprawl Angle In Simplified Models Of Vertical Climbing: Implications For Robots And Roaches, Goran A. Lynch, Lawrence Rome, Daniel E. Koditschek Mar 2012

Sprawl Angle In Simplified Models Of Vertical Climbing: Implications For Robots And Roaches, Goran A. Lynch, Lawrence Rome, Daniel E. Koditschek

Daniel E Koditschek

Empirical data taken from fast climbing sprawled posture animals reveals the presence of strong lateral forces with significant pendulous swaying of the mass center trajectory in a manner captured by a recently proposed dynamical template. In this simulation study we explore the potential benefits of pendulous dynamical climbing in animals and in robots by examining the stability and power advantages of variously more and less sprawled limb morphologies when driven by conventional motors in contrast with animal-like muscles. For open loop models of gait generation inspired by the neural-deprived regimes of high stride-frequency animal climbing, our results corroborate earlier hypotheses …


A Review Of Some Subtleties Of Practical Relevance, Keqin Gu Jan 2012

A Review Of Some Subtleties Of Practical Relevance, Keqin Gu

SIUE Faculty Research, Scholarship, and Creative Activity

This paper reviews some subtleties in time-delay systems of neutral type that are believed to be of particular relevance in practice. Both traditional formulation and the coupled differential-difference equation formulation are used. The discontinuity of the spectrum as a function of delays is discussed. Conditions to guarantee stability under small parameter variations are given. A number of subjects that have been discussed in the literature, often using different methods, are reviewed to illustrate some fundamental concepts. These include systems with small delays, the sensitivity of Smith predictor to small delay mismatch, and the discrete implementation of distributed-delay feedback control. The …


Root Locus Techniques With Nonlinear Gain Parameterization, Brandon Wellman Jan 2012

Root Locus Techniques With Nonlinear Gain Parameterization, Brandon Wellman

Theses and Dissertations--Mechanical Engineering

This thesis presents rules that characterize the root locus for polynomials that are nonlinear in the root-locus parameter k. Classical root locus applies to polynomials that are affine in k. In contrast, this thesis considers polynomials that are quadratic or cubic in k. In particular, we focus on constructing the root locus for linear feedback control systems, where the closed-loop denominator polynomial is quadratic or cubic in k. First, we present quadratic root-locus rules for a controller class that yields a closed-loop denominator polynomial that is quadratic in k. Next, we develop cubic root-locus rules …


Dynamic Test Scheduling In Hardware-In-The-Loop Simulation Of Commercial Vehicles, Tenil Cletus Dec 2011

Dynamic Test Scheduling In Hardware-In-The-Loop Simulation Of Commercial Vehicles, Tenil Cletus

Master's Theses

Modern day commercial vehicles are controlled by various Electronic Control Units (ECU). They are not only tested as single units, but also by networking them in Controlled Area Network bus (CAN) to form a complete electrical control system. This is achieved using Hardware In the Loop (HIL) Integration Lab. In HIL, the electrical system is connected to a real time mathematical model of the vehicle plus it’s environment so as to form a loop.

Testing functionality of the electrical system begins by defining functional tests. An example would be testing cruise control activation. Executing each test is made possible by …


A Study Of A Novel Modular Variable Geometry Frame Arranged As A Robotic Surface, Christopher James Salisbury Dec 2011

A Study Of A Novel Modular Variable Geometry Frame Arranged As A Robotic Surface, Christopher James Salisbury

UNLV Theses, Dissertations, Professional Papers, and Capstones

The novel concept of a "variable geometry frame" is introduced and explored through a three-dimensional robotic surface which is devised and implemented using triangular modules. The link design is optimized using surplus motor dimensions as firm constraints, and round numbers for further arbitrary constraints. Each module is connected by a passive six-bar mechanism that mimics the constraints of a spherical joint at each triangle intersection. A three dimensional inkjet printer is used to create a six-module prototype designed around surplus stepper motors powered by an old computer power supply as a proof-of-concept example.

The finite element method is applied to …


Haptic Tele-Operation Of Wheeled Mobile Robot And Unmanned Aerial Vehicle Over The Internet, Zhiyuan Zuo Aug 2011

Haptic Tele-Operation Of Wheeled Mobile Robot And Unmanned Aerial Vehicle Over The Internet, Zhiyuan Zuo

Masters Theses

Teleoperation of ground/aerial vehicle extends operator's ability (e.g. expertise, strength, mobility) into the remote environment, and haptic feedback enhances the human operator's perception of the slave environment. In my thesis, two cases are studied: wheeled mobile robot (MWR) haptic tele-driving over the Internet and unmanned aerial vehicle (UAV) haptic teleoperation over the Internet.
We propose novel control frameworks for both dynamic WMR and kinematic WMR in various tele-driving modes, and for a "mixed" UAV with translational dynamics and attitude kinematics.
The recently proposed passive set-position modulation (PSPM) framework is extended to guarantee the passivity and/or stability of the closed-loop system …


Mechatronics Application To Solar Tracking, Danny L. Rodriguez Jr Apr 2011

Mechatronics Application To Solar Tracking, Danny L. Rodriguez Jr

Purdue Polytechnic Directed Projects

The purpose of this was to design and implement a two-axis solar tracking system utilizing the National Instruments C-Rio real time controller. In order to accomplish this a prototype was modeled in CAD. This prototype used two 12 V DC motors to change a solar panel's rotation and tilt based on feedback data from three cadmium sulfide photoresistors. This configuration was chosen for its ability to create both a left-right rotational and an up/down tilt differential. In Addition this approach uses National Instruments Labview to control a solar tracking system. Using Labview add uniqueness to this project by adding a …


Development Of A Novel Methodology For Indoor Emission Source Identification, Kwanghoon Han Mar 2011

Development Of A Novel Methodology For Indoor Emission Source Identification, Kwanghoon Han

Kwanghoon Han

The objective of this study was to develop and evaluate a methodology to identify individual sources of emissions based on the measurements of mixed air samples and the emission signatures of individual materials previously determined by Proton Transfer Reaction-Mass Spectrometry (PTR-MS), an on-line analytical device. The methodology based on signal processing principles was developed by employing the method of multiple regression least squares (MRLS) and a normalization technique. Samples of nine typical building materials were tested individually and in combination, including carpet, ceiling material, gypsum board, linoleum, two paints, polyolefine, PVC and wood. Volatile Organic Compound (VOC) emissions from each …


Intelligibility Of Electrolarynx Speech Using A Novel Hands-Free Actuator, Brian Madden, Mark Nolan, Ted Burke, James Condron, Eugene Coyle Jan 2011

Intelligibility Of Electrolarynx Speech Using A Novel Hands-Free Actuator, Brian Madden, Mark Nolan, Ted Burke, James Condron, Eugene Coyle

Conference Papers

During voiced speech, the larynx provides quasi-periodic acoustic excitation of the vocal tract. In most electrolarynxes, mechanical vibrations are produced by a linear electromechanical actuator, the armature of which percusses against a metal or plastic plate at a frequency within the range of glottal excitation. In this paper, the intelligibility of speech produced using a novel hands-free actuator is compared to speech produced using a conventional electrolarynx. Two able-bodied speakers (one male, one female) performed a closed response test containing 28 monosyllabic words, once using a conventional electrolarynx and a second time using the novel design. The resulting audio recordings …


Robust Region Tracking In Multi-Agent Systems Utilizing Sliding Mode Control: Theory And Applications, Mark Bacon Jan 2011

Robust Region Tracking In Multi-Agent Systems Utilizing Sliding Mode Control: Theory And Applications, Mark Bacon

Master's Theses

This thesis presents a methodology to bring controlled agents within a moving region despite agent interaction dynamics, uncertain forces and parameter variation. The logic is derived from traditional Sliding Mode Control theory with an expanded boundary layer which allows position deviation from the region center to specified bounds. As an example of the utility of this control, multiple methods of herding (controlling passive agents by appropriate positioning of controlled agents) are presented.


Stochastic Optimal Control In Nonlinear Systems, Celestin Nkundineza Sep 2010

Stochastic Optimal Control In Nonlinear Systems, Celestin Nkundineza

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Stochastic control is an important area of research in engineering systems that undergo disturbances. Controlling individual states in such systems is critical. The present investigation is concerned with the application of the stochastic optimal control strategy developed by To (2010) and its implementation as well as providing computed results of linear and nonlinear systems under stationary and nonstationary random excitations. In the strategy the feedback matrix is designed based on the achievement of the objectives for individual states in the system through the application of the Lyapunov equation for the system. Each diagonal element in the gain or associated gain …


Determination Of Material Emission Signatures By Ptr-Ms And Their Correlations With Odor Assessments By Human Subjects, Kwanghoon Han Apr 2010

Determination Of Material Emission Signatures By Ptr-Ms And Their Correlations With Odor Assessments By Human Subjects, Kwanghoon Han

Kwanghoon Han

The objectives of this study were to determine volatile organic compound (VOC) emission signatures of nine typical building materials by using proton transfer reaction-mass spectrometry (PTR-MS) and to explore the correlation between the PTR-MS measurements and the measurements of acceptability by human subjects. VOC emissions from each material were measured in a 50-l small-scale chamber. Chamber air was sampled by PTR-MS to determine emission signatures. Sorbent tube sampling and TD-GC/MS analysis were also performed to identify the major VOCs emitted and to compare the resulting data with the PTR-MS emission signatures. The data on the acceptability of air quality assessed …


The Carillon And Its Haptic Signature : Modeling The Changing Force-Feedback Constraints Of A Musical Instrument For Haptic Display, Mark Havryliv, F. Geiger, M. Gurtler, Fazel Naghdy, Greg Schiemer Feb 2010

The Carillon And Its Haptic Signature : Modeling The Changing Force-Feedback Constraints Of A Musical Instrument For Haptic Display, Mark Havryliv, F. Geiger, M. Gurtler, Fazel Naghdy, Greg Schiemer

Greg Schiemer

The carillon is one of the few instruments that elicits sophisticated haptic interaction from amateur and professional players alike. Like the piano keyboard, the velocity of a player’s impact on each carillon key, or baton, affects the quality of the resultant tone; unlike the piano, each carillon baton returns a different force-feedback. Force-feedback varies widely from one baton to the next across the entire range of the instrument and with further idiosyncratic variation from one instrument to another. This makes the carillon an ideal candidate for haptic simulation. The application of synthesized forcefeedback based on an analysis of forces operating …


Derivation And Application Of A Conserved Orbital Energy For The Inverted Pendulum Bipedal Walking Model, Jerry E. Pratt, Sergey V. Drakunov Apr 2007

Derivation And Application Of A Conserved Orbital Energy For The Inverted Pendulum Bipedal Walking Model, Jerry E. Pratt, Sergey V. Drakunov

Publications

We present an analysis of a point mass, point foot, planar inverted pendulum model for bipedal walking. Using this model, we derive expressions for a conserved quantity, the “Orbital Energy”, given a smooth Center of Mass trajectory. Given a closed form Center of Mass Trajectory, the equation for the Orbital Energy is a closed form expression except for an integral term, which we show to be the first moment of area under the Center of Mass path. Hence, given a Center of Mass trajectory, it is straightforward and computationally simple to compute phase portraits for the system. In fact, for …


Derivation And Application Of A Conserved Orbital Energy For The Inverted Pendulum Bipedal Walking Model, Jerry E. Pratt, Sergey V. Drakunov Mar 2007

Derivation And Application Of A Conserved Orbital Energy For The Inverted Pendulum Bipedal Walking Model, Jerry E. Pratt, Sergey V. Drakunov

Sergey V. Drakunov

We present an analysis of a point mass, point foot, planar inverted pendulum model for bipedal walking. Using this model, we derive expressions for a conserved quantity, the “Orbital Energy”, given a smooth Center of Mass trajectory. Given a closed form Center of Mass Trajectory, the equation for the Orbital Energy is a closed form expression except for an integral term, which we show to be the first moment of area under the Center of Mass path. Hence, given a Center of Mass trajectory, it is straightforward and computationally simple to compute phase portraits for the system. In fact, for …


A Fuzzy Logic Controller For Autonomous Wheeled Vehicles, Mohamed Trabia, Linda Z. Shi, Neil Eugene Hodge Dec 2006

A Fuzzy Logic Controller For Autonomous Wheeled Vehicles, Mohamed Trabia, Linda Z. Shi, Neil Eugene Hodge

Mechanical Engineering Faculty Research

Autonomous vehicles have potential applications in many fields, such as replacing humans in hazardous environments, conducting military missions, and performing routine tasks for industry. Driving ground vehicles is an area where human performance has proven to be reliable. Drivers typically respond quickly to sudden changes in their environment. While other control techniques may be used to control a vehicle, fuzzy logic has certain advantages in this area; one of them is its ability to incorporate human knowledge and experience, via language, into relationships among the given quantities. Fuzzy logic controllers for autonomous vehicles have been successfully applied to address various …


Reducing Energy Costs By Optimizing Controller Tuning, Aidan O'Dwyer Jan 2006

Reducing Energy Costs By Optimizing Controller Tuning, Aidan O'Dwyer

Conference papers

The proportional integral derivative (PID) controller is the most dominant form of automatic controller in industrial use today. With this technique, it is necessary to adjust the controller parameters according to the nature of the process. This tailoring of controller to process is known as controller tuning. Controller tuning is easily and effectively performed using tuning rules (i.e. formulae for controller tuning, based on process information). Such tuning rules allow the easy set up of controllers to achieve optimum performance at commissioning. Importantly, they allow ease of re-commissioning if the characteristics of the process change. The paper outlines the results …


Comparison Of Two Distributed Fuzzy Logic Controllers For Flexible-Link Manipulators, Linda Z. Shi, Mohamed Trabia May 2001

Comparison Of Two Distributed Fuzzy Logic Controllers For Flexible-Link Manipulators, Linda Z. Shi, Mohamed Trabia

Mechanical Engineering Faculty Presentations

The paper suggests that fuzzy logic controllers present a computationally efficient and robust alternative to conventional controllers. The paper presents two possible structures for the distributed fuzzy logic controller of a single-link flexible manipulator. A linear quadratic regulator method is used to prove the effectiveness of fuzzy logic controllers.


Design Of Fuzzy Logic Controllers For Optimal Performance, Mohamed Trabia May 2001

Design Of Fuzzy Logic Controllers For Optimal Performance, Mohamed Trabia

Mechanical Engineering Faculty Presentations

While fuzzy logic controllers are generally robust, the performance of a system whose behavior is not well understood, or that has a large number of coupled inputs and outputs, may be less than optimal. In this paper, nonlinear programming techniques are used to improve the performance of a fuzzy logic controller for navigating an autonomous vehicle.


Overview Of Fuzzy Logic, Mohamed Trabia May 2001

Overview Of Fuzzy Logic, Mohamed Trabia

Mechanical Engineering Faculty Presentations

The presentation includes a brief introduction to fuzzy logic and fuzzy logic controllers. These concepts are illustrated by an example of an autonomous vehicle controller.


On-Line Free Form Surface Measurement Via A Fuzzy-Logic Controlled Scanning Probe, Ming Chang, Paul P. Lin Apr 1999

On-Line Free Form Surface Measurement Via A Fuzzy-Logic Controlled Scanning Probe, Ming Chang, Paul P. Lin

Mechanical Engineering Faculty Publications

This paper presents a system and methodology for on-line free form surface measurement via a scanning contact probe installed on a CNC (computer numerical control) machine. The scanning probe provides more sampling points than any traditional touch trigger type of probes used on CNC machines, and better measuring accuracy than laser displacement sensing or structured lighting. The presented measuring system's main advantage is that the number of measured points can vary with the change of surface curvature. To improve the measuring stability and continuity, fuzzy logic control, in lieu of traditional PID control, is employed. As a result, the …


Sliding Mode Measurement Feedback Control For Antilock Braking Systems, Cem Unsal, Pushkin Kachroo Mar 1999

Sliding Mode Measurement Feedback Control For Antilock Braking Systems, Cem Unsal, Pushkin Kachroo

Electrical & Computer Engineering Faculty Research

We describe a nonlinear observer-based design for control of vehicle traction that is important in providing safety and obtaining desired longitudinal vehicle motion. First, a robust sliding mode controller is designed to maintain the wheel slip at any given value. Simulations show that longitudinal traction controller is capable of controlling the vehicle with parameter deviations and disturbances. The direct state feedback is then replaced with nonlinear observers to estimate the vehicle velocity from the output of the system (i.e., wheel velocity). The nonlinear model of the system is shown locally observable. The effects and drawbacks of the extended Kalman filters …


Variable Structure End Point Control Of A Flexible Manipulator, Shailaja Chenumalla, Sahjendra N. Singh Jul 1993

Variable Structure End Point Control Of A Flexible Manipulator, Shailaja Chenumalla, Sahjendra N. Singh

Electrical & Computer Engineering Faculty Research

We treat the question of control and stabilization of the elastic multibody system developed in the Phillips Laboratory, Edwards Air Force Base, California. The controlled output is judiciously chosen such that the zero dynamics are stable or almost stable. A variable structure control (VSC) law is derived for the end point trajectory control. Although, the VSC law accomplishes precise end point tracking, elastic modes are excited during the maneuver of the arm. A Linear stabilizer is designed for the final capture of the terminal state.