Open Access. Powered by Scholars. Published by Universities.®

Ceramic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

1,172 Full-Text Articles 1,406 Authors 337,837 Downloads 48 Institutions

All Articles in Ceramic Materials

Faceted Search

1,172 full-text articles. Page 3 of 22.

High Temperature Dielectric Properties Of Calcium Zirconate, Alan Devoe, Hung Trinh, Fatih Dogan 2023 Missouri University of Science and Technology

High Temperature Dielectric Properties Of Calcium Zirconate, Alan Devoe, Hung Trinh, Fatih Dogan

Materials Science and Engineering Faculty Research & Creative Works

The electrical properties of dense, high purity CaZrO3 discs, sintered at 1380°C with and without added ZrO2, were investigated up to 950°C. Dielectric constant, loss tangent, and electrical conductivity were measured from 25 to 725°C, and the real and imaginary impedances were measured between 800 and 950°C by impedance spectroscopy techniques. Dielectric constant increased by 8% above 300°C and loss tangent increased from.1% at 25°C to ∼2% above 300°C. Activation energy of electrical conductivity determined between 300°C and 950°C by alternative current (AC) and direct current (DC) measurements. These results indicate that CaZrO3 could be a useful dielectric material for …


Strength Retention Of Single-Phase High-Entropy Diboride Ceramics Up To 2000°C, Lun Feng, William Fahrenholtz, Gregory E. Hilmas, Yue Zhou, Jincheng Bai 2023 Missouri University of Science and Technology

Strength Retention Of Single-Phase High-Entropy Diboride Ceramics Up To 2000°C, Lun Feng, William Fahrenholtz, Gregory E. Hilmas, Yue Zhou, Jincheng Bai

Materials Science and Engineering Faculty Research & Creative Works

The mechanical properties of single-phase (Hf0.2,Nb0.2,Ta0.2,Ti0.2,Zr0.2)B2 ceramics with high purity were investigated. The resulting ceramics had relative density greater than 99%, and an average grain size of 4.3 ± 1.6 μm. At room temperature (RT), the Vickers hardness was 25.2 ± 0.6 GPa at a load of 0.49 N, Young's modulus was 551 ± 7 GPa, fracture toughness was 4.5 ± 0.4 MPa m1/2, and flexural strength was 507 ± 10 MPa. Flexural strength increased by more than 50% from 507 ± 10 MPa at RT to 776 ± …


Thermal And Electrical Properties Of Spark Plasma Sintered (Ti,Cr)B2 Ceramics, Steven M. Smith, Lun Feng, William Fahrenholtz, Gregory E. Hilmas, Laura Silvestroni 2023 Missouri University of Science and Technology

Thermal And Electrical Properties Of Spark Plasma Sintered (Ti,Cr)B2 Ceramics, Steven M. Smith, Lun Feng, William Fahrenholtz, Gregory E. Hilmas, Laura Silvestroni

Mathematics and Statistics Faculty Research & Creative Works

Thermal and electrical properties were measured for TiB2 ceramics containing varying CrB2 contents up to 33 mol%. The room-temperature thermal diffusivity decreased with increasing Cr content from 0.330 ± 0.003 cm2/s for pure TiB2 to 0.060 ± 0.003 cm2/s for (Ti0.66Cr0.33)B2. The amount of anisotropy in the coefficients of thermal expansion increased with increasing Cr content and the c-axis had the greatest dependence on Cr addition, with an increase of more than 25% in the thermal expansion for 33 mol% CrB2 compared to TiB2, whereas the a-axis only increased by about 8%. The electrical conductivity was the lowest for (Ti0.66Cr0.33)B2 …


Development Of Interatomic Potential Of High Entropy Diborides With Artificial Intelligence Approach To Simulate The Thermo-Mechanical Properties, Nur Aziz Octoviawan 2023 Missouri State University

Development Of Interatomic Potential Of High Entropy Diborides With Artificial Intelligence Approach To Simulate The Thermo-Mechanical Properties, Nur Aziz Octoviawan

MSU Graduate Theses

The interatomic potentials designed for binary/high entropy diborides and ultra-high temperature composites (UHTC) have been developed through the implementation of deep neural network (DNN) algorithms. These algorithms employed two different approaches and corresponding codes; 1) strictly local & invariant scalar-based descriptors as implemented in the DEEPMD code and 2) equivariant tensor-based descriptors as included in the ALLEGRO code. The samples for training and validation sets of the forces, energy, and virial data were obtained from the ab-initio molecular dynamics (AIMD) simulations and Density Functional Theory (DFT) calculations, including the simulation data from the ultra-high temperature region (> 2000K). The study …


Oxidation Behavior Of Nb-Coated Zirconium Diboride, Jan E. Förster, William Fahrenholtz, Gregory E. Hilmas, Ravisankar Naraparaju 2023 Missouri University of Science and Technology

Oxidation Behavior Of Nb-Coated Zirconium Diboride, Jan E. Förster, William Fahrenholtz, Gregory E. Hilmas, Ravisankar Naraparaju

Materials Science and Engineering Faculty Research & Creative Works

Metallic Nb-Coatings Were Deposited on Top of ZrB2 by Means of Magnetron Sputtering to Improve its Oxidation Resistance. High Temperature Oxidation Tests Have Revealed that the Metallic Nb-Coatings Lead to the Formation of a Dense Solid and Protective Reaction Zone in Addition to a More Stable B2O3 Liquid Solution at the Surface. Compared to Baseline ZrB2, a Reduction in the Oxidation Kinetics, as Well as the Thickness of the Porous Zirconia Layer by 71%, Has Been Achieved with the Help of Nb-Coatings. a Liquid Phase Sintering by Molten Nb2O5 Mechanism Was …


Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin 2022 University of Tennessee, Knoxville

Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin

Doctoral Dissertations

Nuclear thermal propulsion (NTP) utilizes nuclear fission to double the efficiency of
in-space propulsion systems compared with traditional combustion rocket systems.
NTP systems are limited primarily by the fuel material choice, due to the extreme
conditions they will need to endure, including temperatures up to 3000 K, multiple
thermal cycles with rapid heating and cooling, exposure to hot flowing hydrogen,
large thermal gradients, and high neutron flux. Particle based fuels, namely ceramic-
metallic (cermet) and ceramic-ceramic (cercer) composites are both promising fuel
element material candidates for NTP. Given the high temperature nature, these
materials are difficult to fabricate and very …


Assembly Of Ceramic Particles In Aqueous Suspensions Induced By High-Frequency Ac Electric Field, James E. John IV 2022 Old Dominion University

Assembly Of Ceramic Particles In Aqueous Suspensions Induced By High-Frequency Ac Electric Field, James E. John Iv

Mechanical & Aerospace Engineering Theses & Dissertations

Ceramic materials processed using colloidal methods have been the focus of a great deal of research aimed at tailoring the final structure and microstructure of the finished ceramic sample. To this end, various external field effects have been investigated to modify the suspension microstructure without manipulating the ceramic particles directly. In a previous work in the field of ice templating it has been shown that AC electric fields are able to produce microstructural changes in ice templated ceramics that have significantly improved the final mechanical properties. However, the mechanisms for this process are still not well understood in ceramics.

To …


Material Characterization And Comparison Of Sol-Gel Deposited And Rf Magnetron Deposited Lead Zirconate Titanate Thin Films, Katherine Lynne Miles 2022 University of New Mexico - Main Campus

Material Characterization And Comparison Of Sol-Gel Deposited And Rf Magnetron Deposited Lead Zirconate Titanate Thin Films, Katherine Lynne Miles

Mechanical Engineering ETDs

Lead zirconate titanate (PZT) has been a material of interest for sensor, actuator, and transducer applications in microelectromechanical systems (MEMS). This is due to their favorable piezoelectric, pyroelectric and ferroelectric properties. While various methods are available to deposit PZT thin films, radio frequency (RF) magnetron sputtering was selected to provide high quality PZT films with the added capability of batch processing. These sputter deposited PZT films were characterized to determine their internal film stress, Young’s modulus, composition, and structure. After characterization, the sputtered PZT samples were poled using corona poling and direct poling methods. As a means of comparison, commercially …


3d Printing Of Lunar Regolith Based Ceramics Via The Dlp Method, Ricardo Vasquez 2022 Florida International University

3d Printing Of Lunar Regolith Based Ceramics Via The Dlp Method, Ricardo Vasquez

2022 MME Undergraduate Research Symposium

Ceramic parts generally have poor machinability due to their high hardness and high brittleness. Researchers and industries have overcome the difficulty of machining ceramics and have manufactured parts with intricate geometry by using pre-ceramic polymers in stereolithography (SLA) 3D printing and using slurries based on ceramic powder and photopolymer resin in digital light processing (DLP) 3D printing, among other methods. This presentation will discuss the processes involved in the 3D printing of ceramic and ceramic composite parts via the DLP technique. A vital step in ceramic 3D printing is to optimize the printing parameters for a specific slurry formulation in …


Fracture Strength Of Multi-Component Ultra-High Temperature Carbides, Gia Garino 2022 Florida International University

Fracture Strength Of Multi-Component Ultra-High Temperature Carbides, Gia Garino

2022 MME Undergraduate Research Symposium

Ultra-high temperature ceramics (UHTCs) have emerged as a promising material for next generation re-entry hypersonic vehicles due to high melting point (>3000 °C), and high mechanical properties and oxidation resistance. Yet none of the unary UHTCs can satisfy the whole gamut of demanding requirements for aerospace applications. Recently, the single-phase solid-solution formation in a multi-component ultra-high temperature ceramic (MC-UHTC) materials have gained interest due to their superior thermo-mechanical properties compared to conventional UHTCs. Herein, a systematic approach was used to fabricate binary (Ta, Nb)C, ternary (Ta, Nb, Hf)C, and quaternary (Ta, Nb, Hf, Ti)C UHTCs by gradual addition of …


Developing Positive Thermal Coefficient (Ptc) Heaters For Solar Electric Cooking, Katarina Ivana Brekalo, Andrew Shepherd 2022 California Polytechnic State University, San Luis Obispo

Developing Positive Thermal Coefficient (Ptc) Heaters For Solar Electric Cooking, Katarina Ivana Brekalo, Andrew Shepherd

Physics

Positive Thermal Coefficients, PTCs, are materials that abruptly change in resistance in response to changes in temperature. The purpose of this experiment is to explore the viability of using the switching type ceramic PTC thermistor as a replacement for current resistive heaters. These types of PTCs have a nonlinear change in resistance with increases in temperature. This device will be used as a temperature-controlling heating element intended to power an Insulated Solar Electric Cooker (ISEC). The ISEC is designed to cook meals throughout the day for impacted communities as an alternative cooking method that doesn’t require biofuel as an energy …


Enabling Nanoimprint Lithography Techniques Across Multiple Manufacturing Processes, Vincent Einck 2022 University of Massachusetts Amherst

Enabling Nanoimprint Lithography Techniques Across Multiple Manufacturing Processes, Vincent Einck

Doctoral Dissertations

Advanced nanooptics in the areas of flat lenses, diffractive elements, and tunable emissivity require a route to high throughput manufacturing. Nanooptics are often demanding of high refractive index materials, nanometer precision and ease of fabrication. Nanoimprint lithography (NIL) is a low-cost, high throughput manufacturing technique beginning to be realized in commercial industry.1,2 The NIL process is an ideal manufacturing candidate due to its ability to have a fast process time, efficient use of materials, repeatability and high precision while also having wide diversity of potential structures and material choices. Appling NIL techniques to other facets of manufacturing enable the …


Modeling Hierarchical Porous Electrodes With Tailored Anisotropic Structure, Debanjan Sarker 2022 Clemson University

Modeling Hierarchical Porous Electrodes With Tailored Anisotropic Structure, Debanjan Sarker

All Theses

Modern electric vehicles and consumer electronics applications demand high specific energy from Li-ion batteries, which can be charged and discharged faster. In the search for high specific energy, researchers have tried to make thicker battery electrodes which contain a greater proportion of active material. While chemical and structural modification of electrodes can help to increase the electronic conductivity of active material, the microstructure of porous electrodes can be engineered to enhance ion transport for fast charge and discharge. Previous research has shown that macropores introduced by directional freeze tape casting can enhance the performance of thick porous electrodes. For instance, …


Synthesis And Consolidation Of The Aluminosilicate Mineral Anorthite, Lauren E. Eccles 2022 University of Tennessee, Knoxville

Synthesis And Consolidation Of The Aluminosilicate Mineral Anorthite, Lauren E. Eccles

Pursuit - The Journal of Undergraduate Research at The University of Tennessee

Solid-state ceramic synthesis is a fabrication process involving high temperature reactions of solid component powders and is used to prepare materials with novel and advanced properties. Regarding synthetic mineral ceramics, the solid-state process makes it possible to design synthetic minerals with specific compositions and properties not commonly found in their natural, comparatively impure, counterparts. This study focuses on the synthesis of the feldspar anorthite, CaAl2Si2O8, via solid-state procedures and the densification of the synthesized powders using the technique of uniaxial hot-pressing. Constituent powders of aluminum sesquioxide (Al2O3), silicon dioxide (SiO …


The Effects Of Curing Temperature On The Hydration Kinetics Of Plain And Fly Ash Pastes And Compressive Strength Of Corresponding Mortars With And Without Nano-Tio2 Addition., Dan Huang, Mirian Velay-Lizancos, Jan Olek 2022 Purdue University

The Effects Of Curing Temperature On The Hydration Kinetics Of Plain And Fly Ash Pastes And Compressive Strength Of Corresponding Mortars With And Without Nano-Tio2 Addition., Dan Huang, Mirian Velay-Lizancos, Jan Olek

International Conference on Durability of Concrete Structures

Incorporation of fly ash in cementitious systems containing ordinary portland cement (OPC) increases their long-term strength and durability. However, replacement of cement by fly ash also reduces the heat of hydration of such systems and reduces early-age strength development. The reduced rate of strength development can increase the risk of durability problems, e.g. scaling, in cases when young concrete is exposed to low temperatures and deicing chemicals. This study investigated the potential of nano-titanium dioxide (nano-TiO2) particles to modify the hydration kinetics of fly ash pastes and compressive strength development of corresponding mortars cured under low (4°C) and …


Corrosion Performance Of Embedded Steel Bar In Cl--Contaminated Limestone Calcined Clay Cement (Lc3) At Initial Stage Of Hydration, Weiwen Li, Zuhua Xu, Yaocheng Wang, Xin Wang, Feng Xing 2022 Shenzhen University

Corrosion Performance Of Embedded Steel Bar In Cl--Contaminated Limestone Calcined Clay Cement (Lc3) At Initial Stage Of Hydration, Weiwen Li, Zuhua Xu, Yaocheng Wang, Xin Wang, Feng Xing

International Conference on Durability of Concrete Structures

Limestone Calcined Clay Cement (LC3) presents brilliant properties in binding Cl- so that the embedded steel bars are probably protected in Cl--contaminated condition, which meets the need of sea sand application. However, the corrosion performance of steel bars embedded in LC3 paste with Clis unclear, especially in early age hydration. Thus, a series of experiments were carried out to evaluate the corrosion performance of steel bars on initial and hardened stages of hydration, including concentration of OH- and Cl- in real pore solution, open circuit potential (OCP) and chemical elements of steel bars. …


Evaluating The Effects Of Granulated Rubber And Glass Fibers In Polymer Concrete As A Structural Material For Wafer Grinding Machines, Kevin Gabriel Kuehn, Philip Randall Streeter 2022 California Polytechnic State University, San Luis Obispo

Evaluating The Effects Of Granulated Rubber And Glass Fibers In Polymer Concrete As A Structural Material For Wafer Grinding Machines, Kevin Gabriel Kuehn, Philip Randall Streeter

Materials Engineering

Polymer concrete is a composite material used to replace cast iron and steel in wafer grinding machines for vibration damping. During the grinding and lapping processes of manufacturing silicon wafers, excessive vibrations may cause subsurface damage which requires additional polishing and reduces yield. Nine compositions containing various levels of granulated rubber and glass fibers were manufactured. CRM WRF-10 granulated rubber was examined at 0%, 5%, and 10% and Corning Cem-Fil glass fibers were added at 0%, 0.5%, and 1% by weight. Smooth-On EpoxAcast 690 epoxy resin was held constant at 16% for each composition. Crushed granite aggregate from Martin Marietta, …


Fracture Response Of Wollastonite Fiber-Reinforced Cementitious Composites: Evaluation Using Micro-Indentation And Finite Element Simulation, Sami Doner, Gideon A. Lyngdoh, Sumeru Nayak, Sumanta Das 2022 George Fox University

Fracture Response Of Wollastonite Fiber-Reinforced Cementitious Composites: Evaluation Using Micro-Indentation And Finite Element Simulation, Sami Doner, Gideon A. Lyngdoh, Sumeru Nayak, Sumanta Das

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

The paper presents indentation studies on wollastonite fiber incorporated cementitious systems. The acicular nature of the fibers is poised to delay the coalescence of micro-cracks in such systems thus leading to tougher building materials. Towards that end, load-penetration depth results from the indentation studies are employed to ascertain elastic and fracture properties of wollastonite-incorporated cementitious composites. While up to 10% mass-based cement-replacement by wollastonite results in comparable elastic moduli as compared to conventional binders, the fracture toughness increases by as much as 33%. In order to gain insights into the toughening mechanisms brought about by the fine fibers, a microstructure-guided …


Model-Based Design Of An Optimal Lqg Regulator For A Piezoelectric Actuated Smart Structure Using A High-Precision Laser Interferometry Measurement System, Grant P. Gallagher 2022 California Polytechnic State University, San Luis Obispo

Model-Based Design Of An Optimal Lqg Regulator For A Piezoelectric Actuated Smart Structure Using A High-Precision Laser Interferometry Measurement System, Grant P. Gallagher

Master's Theses

Smart structure control systems commonly use piezoceramic sensors or accelerometers as vibration measurement devices. These measurement devices often produce noisy and/or low-precision signals, which makes it difficult to measure small-amplitude vibrations. Laser interferometry devices pose as an alternative high-precision position measurement method, capable of nanometer-scale resolution. The aim of this research is to utilize a model-based design approach to develop and implement a real-time Linear Quadratic Gaussian (LQG) regulator for a piezoelectric actuated smart structure using a high-precision laser interferometry measurement system to suppress the excitation of vibratory modes.

The analytical model of the smart structure is derived using the …


Synthesis And Property Characterization Of Rare-Earth High-Entropy Oxides With Pyrochlore-Type Structures, Candice Kinsler-Fedon 2022 University of Tennessee, Knoxville

Synthesis And Property Characterization Of Rare-Earth High-Entropy Oxides With Pyrochlore-Type Structures, Candice Kinsler-Fedon

Doctoral Dissertations

In the search for novel materials with advanced physical properties, the concept of adding configurational entropy onto a single atomic site is known to provide new avenues toward material discovery. In the case of high entropy oxides (HEOs), the ability to “tune” a material’s properties by having multiple cations on single or multiple sites allows for greater opportunity to design materials for specific applications. The work presented here explores the synthesis of new multicomponent (high entropy) oxides, followed by a detailed characterization using several techniques. We have successfully synthesized multiple single-phase polycrystalline rare-earth high entropy oxides and grown large, bulk …


Digital Commons powered by bepress