Intrinsic Point Defects (Vacancies And Antisites) In Cdgep2 Crystals,
2023
Air Force Institute of Technology
Intrinsic Point Defects (Vacancies And Antisites) In Cdgep2 Crystals, Timothy D. Gustafson, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, Kent L. Averett, Jonathan E. Slagle, Larry E. Halliburton
Faculty Publications
Cadmium germanium diphosphide (CdGeP2) crystals, with versatile terahertz-generating properties, belong to the chalcopyrite family of nonlinear optical materials. Other widely investigated members of this family are ZnGeP2 and CdSiP2. The room-temperature absorption edge of CdGeP2 is near 1.72 eV (720 nm). Cadmium vacancies, phosphorous vacancies, and germanium-on-cadmium antisites are present in as-grown CdGeP2 crystals. These unintentional intrinsic point defects are best studied below room temperature with electron paramagnetic resonance (EPR) and optical absorption. Prior to exposure to light, the defects are in charge states that have no unpaired spins. Illuminating a CdGeP2 …
Method Of Evanescently Coupling Whispering Gallery Mode Optical Resonators Using Liquids [U.S. Patent Us11650370b2],
2023
Air Force Institute of Technology
Method Of Evanescently Coupling Whispering Gallery Mode Optical Resonators Using Liquids [U.S. Patent Us11650370b2], Hengky Chandrahalim, Kyle T. Bodily
Faculty Publications
The present invention relates to evanescently coupling whispering gallery mode optical resonators having a liquid coupling as well as methods of making and using same. The aforementioned evanescently coupling whispering gallery mode optical resonators having a liquid couplings provide increased tunability and sensing selectivity over current same. The aforementioned. Applicants’ method of making evanescent-wave coupled optical resonators can be achieved while having coupling gap dimensions that can be fabricated using standard photolithography. Thus economic, rapid, and mass production of coupled WGM resonators-based lasers, sensors, and signal processors for a broad range of applications can be realized.
Two-Dimensional Field Effect Transistor,
2023
Washington University in St. Louis
Two-Dimensional Field Effect Transistor, Yimeng Li
McKelvey School of Engineering Theses & Dissertations
As silicon-based field-effect transistors (FETs) approach their physical limits with channel lengths approaching 5 nm, the search for new semiconductor materials that can surpass this limit has become urgent. Two-dimensional layered semiconductor nanomaterials, represented by graphene, have emerged as promising candidates due to their unique physical, mechanical, and chemical properties. Unlike traditional silicon-based FETs, two dimensional (2D) layered nanomaterials are held together by van der Waals forces between layers, with no dangling bonds on the material surface, which can effectively address the short-channel effect issue faced by traditional silicon-based FETs. However, unlike traditional silicon-based FETs, which have matured fabrication systems, …
Investigation Of Light Management Strategies And Photochemistry Of Si/Tio2 Tandem Microwire Slurries For Solar Hydrogen Generation.,
2023
University of Louisville
Investigation Of Light Management Strategies And Photochemistry Of Si/Tio2 Tandem Microwire Slurries For Solar Hydrogen Generation., Saumya Gulati
Electronic Theses and Dissertations
The intermittent nature of the Sun makes it difficult to use it as a primary source of electricity and often needs to be supplemented by electricity from the grid which comes from fossil fuels. This motivates the need for solar energy storage. Photoelectrochemical (PEC) water-splitting has been explored as a means to convert solar energy into hydrogen (and oxygen), which can be stored as fuel. The current method of coupling PV and electrolyzer units has been widely commercialized, however, the cost of H2 generated is far from the target of $1/kg set by the DOE under the Energy EarthShot …
Optical Fiber Tip Micro Anemometer [U.S. Patent Us11635315b2],
2023
Air Force Institute of Technology
Optical Fiber Tip Micro Anemometer [U.S. Patent Us11635315b2], Hengky Chandrahalim, Jeremiah C. Williams
Faculty Publications
A passive microscopic flow sensor includes a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fiber. The three-dimensional microscopic optical structure includes a post attached off-center to and extending longitudinally from the cleaved tip of the optical fiber. A rotor of the three-dimensional microscopic optical structure is received for rotation on the post. The rotor has more than one blade. Each blade has a reflective undersurface that reflects a light signal back through the optical fiber when center aligned with the optical fiber, the blades of the rotor shaped to rotate at a rate related to …
Synthesis Of Quasi-Freestanding Graphene Films Using Radical Species Formed In Cold Plasmas,
2023
West Virginia University
Synthesis Of Quasi-Freestanding Graphene Films Using Radical Species Formed In Cold Plasmas, Michael A. Mathews Jr.
Graduate Theses, Dissertations, and Problem Reports
For over a decade, the Stinespring laboratory has investigated scalable, plasma assisted synthesis (PAS) methods for the growth of graphene films on silicon carbide (SiC). These typically utilized CF4-based inductively coupled plasma (ICP) with reactive ion etching (RIE) to selectively etch silicon from the SiC lattice. This yielded a halogenated carbon-rich surface layer which was then annealed to produce the graphene layers. The thickness of the films was controlled by the plasma parameters, and overall, the process was readily scalable to the diameter of the SiC wafer.
The PAS process reproducibly yielded two- to three-layer thick graphene films …
Using Berries To Turn Sunlight Into Electricity: Taking Advice From Mother Nature Because She Has Already Mastered The Art Of Using Solar Energy,
2023
Bard College
Using Berries To Turn Sunlight Into Electricity: Taking Advice From Mother Nature Because She Has Already Mastered The Art Of Using Solar Energy, Quincy Ross
Senior Projects Spring 2023
As we try to stop anthropogenic climate change, we need to find energy sources that don’t involve burning fossil fuels. The Earth is constantly being hit with energy in the form of sunlight, we just need to figure out how to use it, thankfully plants have already gotten very good at photosynthesis. Solar energy is being improved at an exciting rate but has some material downsides when it comes to raw material mining. Dye sensitized solar cells, though having a lower efficiency than traditional photovoltaics open up opportunities for improving solar energy in many other aspects, such as reducing material …
High Energy Blue Light Induces Oxidative Stress And Retinal Cell Apoptosis,
2023
Arcadia University
High Energy Blue Light Induces Oxidative Stress And Retinal Cell Apoptosis, Jessica Malinsky
Capstone Showcase
Blue light (BL) is a high energy, short wavelength spanning 400 to 500 nm. Found in technological and environmental forms, BL has been shown to induce photochemical damage of the retina by reactive oxygen species (ROS) production. Excess ROS leads to oxidative stress, which disrupts retinal mitochondrial structure and function. As mitochondria amply occupy photoreceptors, they also contribute to oxidative stress due to their selectively significant absorption of BL at 400 to 500 nm. ROS generation that induces oxidative stress subsequently promotes retinal mitochondrial apoptosis. BL filtering and preventative mechanisms have been suggested to improve or repair BL-induced retinal damage, …
Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications,
2022
New Jersey Institute of Technology
Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula
Dissertations
Wide bandgap (WBG) semiconductors play a crucial role in the current solid-state lighting technology. The AlGaN compound semiconductor is widely used for ultraviolet (UV) light-emitting diodes (LEDs), however, the efficiency of these LEDs is largely in a single-digit percentage range due to several factors. Until recently, AlInN alloy has been relatively unexplored, though it holds potential for light-emitters operating in the visible and UV regions. In this dissertation, the first axial AlInN core-shell nanowire UV LEDs operating in the UV-A and UV-B regions with an internal quantum efficiency (IQE) of 52% are demonstrated. Moreover, the light extraction efficiency of this …
Design, Fabrication, And Characterization Of Conjugated Polymeric Electrochemical Memristors As Neuromorphic/Integrated Circuits,
2022
Clemson University
Design, Fabrication, And Characterization Of Conjugated Polymeric Electrochemical Memristors As Neuromorphic/Integrated Circuits, Benjamin Grant
All Dissertations
Organic materials are promising candidates for future electronic devices compared to the complementing inorganic materials due to their ease of processability, use, and disposal, low cost of fabrication, energy efficiency, and flexible nature toward implementation as flexible and non-conformal devices.With that in mind, electrochemical materials have been widely demonstrated with commercial use as sensors, displays, and a variety of other electronic devices. As Moore's law predicts the increase in the density of transistors on a chip, the requirement to create either smaller transistors or the replacement of the transistor device entirely is apparent. Memory resistors, coined ``memristor", are variable resistive …
Investigation Of Gaas Double Heterostructures For Photonic Heat Engines,
2022
University of New Mexico
Investigation Of Gaas Double Heterostructures For Photonic Heat Engines, Nathan Giannini-Hutchin
Optical Science and Engineering ETDs
The creation of a laser cooled semiconductor device has been a long sought achievement. GaAs-based devices have emerged as a promising candidate for the realization of this goal. Efforts to improve the efficiency of such devices have enabled the material to exhibit external quantum efficiencies (EQE, a measure of the probability that an excitation leads to the emission of a photon) of 99.5\%. Despite this impressive feat, a laser coolable device remains elusive.
To investigate the obstacles to such a device, the material characteristics of GaAs-based double heterostructures (DHS) are theoretically and experimentally examined. Through this study, a GaAs $\vert$ …
Material Characterization And Comparison Of Sol-Gel Deposited And Rf Magnetron Deposited Lead Zirconate Titanate Thin Films,
2022
University of New Mexico - Main Campus
Material Characterization And Comparison Of Sol-Gel Deposited And Rf Magnetron Deposited Lead Zirconate Titanate Thin Films, Katherine Lynne Miles
Mechanical Engineering ETDs
Lead zirconate titanate (PZT) has been a material of interest for sensor, actuator, and transducer applications in microelectromechanical systems (MEMS). This is due to their favorable piezoelectric, pyroelectric and ferroelectric properties. While various methods are available to deposit PZT thin films, radio frequency (RF) magnetron sputtering was selected to provide high quality PZT films with the added capability of batch processing. These sputter deposited PZT films were characterized to determine their internal film stress, Young’s modulus, composition, and structure. After characterization, the sputtered PZT samples were poled using corona poling and direct poling methods. As a means of comparison, commercially …
Cnt Metamaterial Fabrication 3d Printing Mask Process,
2022
Florida International University
Cnt Metamaterial Fabrication 3d Printing Mask Process, Jose J. Rivero Iii
2022 MME Undergraduate Research Symposium
The demand for clean energy is rising with the global population. Renewable energy sources, such as solar, will play a key role in the years ahead. Solar energy has a key problem with energy storage as the energy produced during peak solar hours must be used immediately or stored. Carbon Nanotubes (CNTs) have unique electrostatic properties, similar to metals, capable of producing and storing electric energy in the form of a capacitor. The CNTs are to be arranged in a pattern using 3D printing to generate a Split Ring
Resonator (SRR) metamaterial. Past research has shown generating CNT SRR patterns …
Sculpting Charge In Graphene Through Patterned Strain,
2022
Purdue University
Sculpting Charge In Graphene Through Patterned Strain, Dylan J. Balter, Jenna Smith
The Journal of Purdue Undergraduate Research
No abstract provided.
Optimizing Switching Of Non-Linear Properties With Hyperbolic Metamaterials,
2022
Air Force Institute of Technology
Optimizing Switching Of Non-Linear Properties With Hyperbolic Metamaterials, James A. Ethridge, John G. Jones, Manuel R. Ferdinandus, Michael J. Havrilla, Michael A. Marciniak
Faculty Publications
Hyperbolic metamaterials have been demonstrated to have special potential in their linear response, but the extent of their non-linear response has not been extensively modeled or measured. In this work, novel non-linear behavior of an ITO/SiO2 layered hyperbolic metamaterial is modeled and experimentally confirmed, specifically a change in the sign of the non-linear absorption with intensity. This behavior is tunable and can be achieved with a simple one-dimensional layered design. Fabrication was performed with physical vapor deposition, and measurements were conducted using the Z-scan technique. Potential applications include tunable optical switches, optical limiters, and tunable components of laser sources.
Oxygen Vacancies In Lib3O5 Crystals And Their Role In Nonlinear Absorption,
2022
Air Force Institute of Technology
Oxygen Vacancies In Lib3O5 Crystals And Their Role In Nonlinear Absorption, Brian C. Holloway, Christopher A. Lenyk, Timothy D. Gustafson, Nancy C. Giles
Faculty Publications
LiB3O5 (LBO) crystals are used to generate the second, third, and fourth harmonics of near-infrared solid-state lasers. At high power levels, the material’s performance is adversely affected by nonlinear absorption. We show that as-grown crystals contain oxygen and lithium vacancies. Transient absorption bands are formed when these intrinsic defects serve as traps for “free” electrons and holes created by x rays or by three- and four-photon absorption processes. Trapped electrons introduce a band near 300 nm and trapped holes produce bands in the 500-600 nm region. Electron paramagnetic resonance (EPR) is used to identify and characterize the …
Etching Process Development For Sic Cmos,
2022
University of Arkansas, Fayetteville
Etching Process Development For Sic Cmos, Weston Reed Renfrow
Graduate Theses and Dissertations
Silicon Carbide (SiC) is an exciting material that is growing in popularity for having qualities that make it a helpful semiconductor in extreme environments where silicon devices fail. The development of a SiC CMOS is in its infancy. There are many improvements that need to be made to develop this technology further. Photolithography is the most significant bottleneck in the etching process; it was studied and improved upon. Etching SiC can be a challenge with its reinforced crystal structure. Chlorine-based inductively coupled plasma (ICP) etching of intrinsic SiC and doped SiC, SiO2, and Silicon has been studied. A baseline chlorine …
Development Of Metal Halide Perovskites For Radiation Detection,
2022
University of Tennessee, Knoxville
Development Of Metal Halide Perovskites For Radiation Detection, Ryan Tan
Doctoral Dissertations
Metal halide perovskite (MHP) semiconductors have attracted significant interest in recent years within photovoltaic and radiation detection communities due to their inexpensive solution growths, high effective atomic number for gamma and X-ray sensing, suitable bandgap, large resistivity, and moderate mobility-lifetime products. The MHP stoichiometry can also be tuned as needed to achieve desired physical and electronic properties. Moreover, the hybrid or organometallic halide perovskite (OMHP) variants contain a large atomic fraction of hydrogen for fast neutron sensing. These qualities make MHPs an attractive low-cost option for meeting detector needs within nuclear security and imaging applications. This work presents the development …
Subwavelength Engineering Of Silicon Photonic Waveguides,
2022
Clemson University
Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik
All Dissertations
The dissertation demonstrates subwavelength engineering of silicon photonic waveguides in the form of two different structures or avenues: (i) a novel ultra-low mode area v-groove waveguide to enhance light-matter interaction; and (ii) a nanoscale sidewall crystalline grating performed as physical unclonable function to achieve hardware and information security. With the advancement of modern technology and modern supply chain throughout the globe, silicon photonics is set to lead the global semiconductor foundries, thanks to its abundance in nature and a mature and well-established industry. Since, the silicon waveguide is the heart of silicon photonics, it can be considered as the core …
Brain Inspired Organic Electronic Devices And Systems For Adaptive Signal Processing, Memory, And Learning.,
2022
University of Tennessee, Knoxville
Brain Inspired Organic Electronic Devices And Systems For Adaptive Signal Processing, Memory, And Learning., Subhadeep Koner
Doctoral Dissertations
A new class of electronic device has emerged which bear the potential for low powered brain like adaptive signal processing, memory, and learning. It is a non-linear resistor with memory coined as memristor. A memristor is a two-terminal electrical device which simultaneously changes its resistance (processing information) and store the resistance state pertaining to the applied power (memory). Therefore, it can collocate memory and processing much like our brain synapse which can save time and energy for information processing. Leveraging stored memory, it can thereby help future engineered systems to learn autonomously from past experiences. There has been a growing …
