Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

1,068 Full-Text Articles 1,746 Authors 531,420 Downloads 90 Institutions

All Articles in Polymer and Organic Materials

Faceted Search

1,068 full-text articles. Page 1 of 49.

Assessing Adoption Barriers Of Sustainable Packaging In Egypt, Carol Ramses Morgan 2024 American University in Cairo

Assessing Adoption Barriers Of Sustainable Packaging In Egypt, Carol Ramses Morgan

Theses and Dissertations

Sustainable packaging has become an essential part of business decisions and corporate directions. With the rise of environmental damages due to improper waste management and unsustainable practices, businesses have a major responsibility to analyze their products’ life cycles and redesign them with sustainability in mind. Applying sustainable packaging could save companies large amounts of resources, therefore cutting costs, while also achieving the legal and social duty as a corporation towards society and the environment. Many developing countries, with specific focus on Egypt, have recently focused on legislative and corporate decisions in order to encourage more sustainable practices. Egypt’s new Waste …


Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave 2024 The Graduate Center, City University of New York

Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave

Dissertations, Theses, and Capstone Projects

The challenge of establishing a sustainable and circular economy for materials in medicine and technology necessitates bioinspired design. Nature's intricate machinery, forged through evolution, relies on a finite set of biomolecular building blocks with through-bond and through-space interactions. Repurposing these molecular building blocks requires a seamless integration of computational modeling, design, and experimental validation. The tools and concepts developed in this thesis pioneer new directions in peptide-materials design, grounded in fundamental principles of physical chemistry. We present a synergistic approach that integrates experimental designs and computational methods, specifically molecular dynamics simulations, to gain in-depth molecular insights crucial for advancing the …


Limits Of Economy And Fidelity For Programmable Assembly Of Size-Controlled Triply-Periodic Polyhedra, Carlos M. Duque, Douglas M. Hal, Botond Tyukodi, Michael F. Hagan, Christian D. Santangelo, Gregory M. Grason 2024 Max Planck Institute of Molecular Cell Biology and Genetics

Limits Of Economy And Fidelity For Programmable Assembly Of Size-Controlled Triply-Periodic Polyhedra, Carlos M. Duque, Douglas M. Hal, Botond Tyukodi, Michael F. Hagan, Christian D. Santangelo, Gregory M. Grason

Data and Datasets

We propose and investigate an extension of the Caspar-Klug symmetry principles for viral capsid assembly to the programmable assembly of size-controlled triply-periodic polyhedra, discrete variants of the Primitive, Diamond, and Gyroid cubic minimal surfaces. Inspired by a recent class of programmable DNA origami colloids, we demonstrate that the economy of design in these crystalline assemblies -- in terms of the growth of the number of distinct particle species required with the increased size-scale (e.g. periodicity) -- is comparable to viral shells. We further test the role of geometric specificity in these assemblies via dynamical assembly simulations, which show that conditions …


Design, Fabrication And Characterization Of Zero Power Sensor/Harvester For Smart Grid Applications, Zeynel Guler 2023 University of New Mexico

Design, Fabrication And Characterization Of Zero Power Sensor/Harvester For Smart Grid Applications, Zeynel Guler

Mechanical Engineering ETDs

This study presents a flexible sensor/harvester device to be used in both electromagnetic sensing and energy harvesting applications for smart grids. When a current passes through a wire, the sensor detects the magnetic field created by that current. The sensor magnet interacts with the wire magnetic field resulting in a transfer of energy through the piezoelectric cantilever. Piezoelectric, conductive, magnetic, and magnetostrictive composite thin films were prepared to fabricate this device.

Initially, the magnet of the cantilever was optimized considering its shape, thickness, length, taper angle etc. via both simulations and experiments. Peak to peak voltage versus cantilever position graph …


Thermally Rearranging Polyimide Networks For High-Temperature Applications, William Guzman 2023 The University of Southern Mississippi

Thermally Rearranging Polyimide Networks For High-Temperature Applications, William Guzman

Dissertations

High-performance polymers can retain functional properties when exposed to long-term or short-term durations of harsh conditions, such as mechanical action, at elevated temperatures (>177 °C). A mixture of intramolecular and intermolecular forces of and between polymer chains provide excellent property retention at elevated temperatures. Specifically, the highly aromatic nature of high-performance polymer backbones provides outstanding thermal stability, which is typically attributed to π-π stacking. However, the interrelationship between thermal stability and high aromaticity creates a challenging structure-processing relationship paradigm, which causes poor polymer processability in most high-performance polymers. Herein, it was demonstrated that rationally designing a crosslinking phenylethynyl imide …


A Comprehensive Review On Metal Oxide-Nanocellulose Composites In Sustainable Active And Intelligent Food Packaging, Kalpani Y. Perera, Amit Jaiswal, Swarma Jaiswal, Dileswar Pradhan 2023 Technological University Dublin

A Comprehensive Review On Metal Oxide-Nanocellulose Composites In Sustainable Active And Intelligent Food Packaging, Kalpani Y. Perera, Amit Jaiswal, Swarma Jaiswal, Dileswar Pradhan

Articles

The aim of this article is to provide an overview of the potential advantages and drawbacks of nanocellulose and metal oxide-based composites in food packaging. These materials offer improved mechanical and barrier properties, as well as antioxidant and antimicrobial benefits that extend the shelf life of food products. Nanocomposite structures protect food from various physiological factors and immobilize enzymes, while metal oxide nanoparticles provide antibacterial effects against Gram-positive and Gram-negative bacteria. However, there are concerns regarding the safety of nanoparticles and their potential migration into packaged food during processing and storage. This article explores these issues and highlights the need …


Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise 2023 University of Nebraska-Lincoln

Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

The field of additive manufacturing (AM) has gained a significant amount of popularity due to the increasing need for more sustainable manufacturing techniques and the adaptive development of complex product geometries. The problem is that AM parts routinely exhibit flaws or weaknesses that affect functionality or performance. Over the years, surface treatments have been developed to compensate certain flaws or weaknesses in manufactured products. Combining surface treatments with the modularity of additive manufacturing could lead to more adaptable and creative improvements of product functions in the future. The current work evaluates the feasibility of pursuing a new research axis in …


Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams 2023 Clemson University

Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams

All Dissertations

While Carbon Fiber Reinforced Polymers (CFRPs) have exceptional mechanical properties concerning their overall weight, their failure profile in demanding high-stress environments raises reliability concerns in structural applications. Two crucial limiting factors in CFRP reliability are low-strain material degradation and low fracture toughness. Due to CFRP’s low strain degradation characteristics, a wide variety of interlaminar damage can be sustained without any appreciable change to the physical structure itself. This damage suffered by the energy transfer from high- stress levels appears in the form of microporosity, crazes, microcracks, and delamination in the matrix material before any severe laminate damage is observed. This …


Modular Composite Sandwich Structures For Thermal And Structural Retrofitting Of Existing Buildings, Marc Al Ghazal 2023 University of Tennessee, Knoxville

Modular Composite Sandwich Structures For Thermal And Structural Retrofitting Of Existing Buildings, Marc Al Ghazal

Masters Theses

Around 40% of global energy consumption and 30% of worldwide carbon dioxide (CO2) emissions are attributed to buildings. Most of this consumption is dedicated to ensuring thermal comfort. The goal of this research was to develop and field validate retrofit solutions to improve the energy efficiency of buildings. Exterior cladding panels were designed and tested to ensure adequate thermal and structural performance. Sandwich panels (glass fibers reinforced polymer (GFRP) skins and polymeric foam cores) were fabricated using the vacuum assisted resin transfer molding (VARTM) process. Extruded polystyrene (XPS) and polyurethane (PU) foams were compared as core materials through a series …


Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav 2023 Florida Institute of Technology

Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav

Theses and Dissertations

Recent advances in additive manufacturing technologies have already led to wide-scale adoption of 3D-printed parts in various industries. The expansion in choice of materials that can be processed, particularly using Fused Deposition Modeling (FDM), and the steady advancements in dimensional accuracy control have extended the range of applications far beyond rapid prototyping. However, additive manufacturing still has considerable limitations compared to traditional and subtractive manufacturing processes. This work addresses limitations associated with the as-deposited surface roughness of 3D-printed parts. The effects of roughness-induced stress concentrations were studied on ultimate tensile strength and fatigue life. The samples were manufactured using a …


Interfacial Thermomechanical Behavior Of Hybrid Carbon Fibers, Sriraj Srihari 2023 Embry-Riddle Aeronautical University

Interfacial Thermomechanical Behavior Of Hybrid Carbon Fibers, Sriraj Srihari

Doctoral Dissertations and Master's Theses

The carbon fiber/epoxy interface is of great importance in composite design due to its load transfer mechanisms from the weak epoxy to the stronger fiber. Improving the strength of the interface reduces the risk of failure at the interface and improves the load transfer to the fiber. In this study, two types of nano-species ZnO nanowires and nickel-based metal organic frameworks were grown on carbon fibers to improve the interfaces. The interfacial mechanics of the enhanced fibers are evaluated using nanoindentation studies. Composite samples with Aeropoxy matrix and vertically aligned fibers are fabricated for this purpose. A Bruker TI-980 TriboIndenter …


Synergistic Effect Of Nanoclay And Barium Sulfate Fillers On The Corrosion Resistance Of Polyester Powder Coatings, Jinbao Huang, Marshall Shuai Yang, Chengqian Xian, James Joseph Noel, Yolanda S. Hedberg, Jian Chen, Ubong Eduok, Ivan Barker, Jeffrey Daniel Henderson, Haiping Zhang, Liqin Wang, Hui Zhang, Jesse Zhu 2023 Western University

Synergistic Effect Of Nanoclay And Barium Sulfate Fillers On The Corrosion Resistance Of Polyester Powder Coatings, Jinbao Huang, Marshall Shuai Yang, Chengqian Xian, James Joseph Noel, Yolanda S. Hedberg, Jian Chen, Ubong Eduok, Ivan Barker, Jeffrey Daniel Henderson, Haiping Zhang, Liqin Wang, Hui Zhang, Jesse Zhu

Chemistry Publications

No abstract provided.


Investigating The Rheological Behavior Of A Simple Yield Stress Fluid Under Shear Flows, Francesco Accetta 2023 New Jersey Institute of Technology

Investigating The Rheological Behavior Of A Simple Yield Stress Fluid Under Shear Flows, Francesco Accetta

Theses

Many soft materials display unique and complex rheological behavior characterized by a transition from a solid-like to a fluid-like state upon the application of a force that exceeds the threshold to flow, known as the yield stress. Yield stress fluids are found in a wide range of commonly encountered materials including microgels, emulsions, and foams, and have been widely studied by rheologists over the last several decades. Carbopol is a popular polymeric microgel system as it displays simple, non-thixotropic rheological behavior and is typically seen as an ideal yield stress fluid. Previous research has demonstrated the reproducible behavior of shear …


Mechanical Characterization Of Automated Fiber Placement And Additive Manufacturing Hybrid Composites, Lucan Haviland 2023 University of Maine

Mechanical Characterization Of Automated Fiber Placement And Additive Manufacturing Hybrid Composites, Lucan Haviland

Electronic Theses and Dissertations

This thesis presents the optimization of processing parameters based on the mechanical properties of Continuous Fiber-Reinforced Thermoplastic (CFRTP) Unidirectional (UD) consolidated tapes. The UD tapes were consolidated using an AFP head and a thermoforming press for comparison. The adhesive strength of hybrid parts consisting of CFRTP UD tape bonded to a 3D-printed substrate with the same matrix system were investigated. Large Area Additive Manufacturing (LAAM) was utilized for the 3D-printed parts. Different types of thermoplastic composite materials were explored, including Glass Fiber reinforced Polyethylene Terephthalate Glycol (GF/PETG), Carbon Fiber reinforced Polyethylene Terephthalate Glycol (CF/PETG), Carbon Fiber reinforced Polycarbonate (CF/PC), and …


Investigating The Effect Of Bead Geometry On Fiber Orientation And Thermomechanical Properties For Large-Format Extrusion-Based Additive Manufacturing, Joanna F. Keaton 2023 University of Maine

Investigating The Effect Of Bead Geometry On Fiber Orientation And Thermomechanical Properties For Large-Format Extrusion-Based Additive Manufacturing, Joanna F. Keaton

Electronic Theses and Dissertations

In large-format extrusion-based additive manufacturing of polymer composites, the relationship between material properties and processing parameters requires further investigation. This thesis focuses on the relationship between fiber orientation and thermomechanical properties for short fiber-filled thermoplastic polymer systems manufactured by extrusion-based additive manufacturing. Fiber orientation is particularly important in determining the thermomechanical properties of the composite material as properties in the direction of deposition are expected to be higher for highly aligned fibers than randomly aligned fibers. Fiber orientation distribution, which is related to processing parameters and deposition conditions, can be efficiently represented by the orientation tensor. The orientation tensor can …


Numerical Modeling And Simulation On Deformation And Failure Behaviors Of Polymeric Materials, Heng Feng 2023 The University of Western Ontario

Numerical Modeling And Simulation On Deformation And Failure Behaviors Of Polymeric Materials, Heng Feng

Electronic Thesis and Dissertation Repository

Featured by biocompatibility, high compliance and capacity in sustaining large deformation, dielectric elastomers (DEs) and hydrogels have gained extensive research popularity for their potential applications in the fields of soft robots, biomimetics, tissue engineering, drug delivery, and energy harvesting. The design of such soft and smart material-based devices and structures requires deep understanding and accurate simulation of their constitutive behaviors, which is challenged by their nonlinear material properties due to unique microstructures and multi-physics coupling. Meanwhile, in different application contexts, those structures are also susceptible to different failure modes, imposing further challenges in simulating and predicting their performance. To fulfill …


Evaluation Of Biomass As Bio-Additive In 3d Printing, Shuyang Zhang 2023 University of Tennessee, Knoxville

Evaluation Of Biomass As Bio-Additive In 3d Printing, Shuyang Zhang

Doctoral Dissertations

The petrol-based polymer has been widely applied in current daily life. The end-of-life of polymeric products has drawn environmental concerns. One of the solutions to such issues is to use bio-renewable materials to replace or reduce the use of petrol-based materials. Lignocellulosic materials are one of the potential candidates. Along with the features of 3D printing and the unique properties of biomass, 3D-printed biomass-based materials could be promising in preparing sustainable alternatives.

In this dissertation, lignin and other biomass were applied to various 3D printing techniques for sustainable composites. Stereolithography (SLA) was first used, and the kraft softwood lignin was …


Double Cantilever Beam Mode-I Testing Validation In Large-Scale Additive Manufacturing Carbon Composite, Luis Alfonso Camacho 2023 University of Texas at El Paso

Double Cantilever Beam Mode-I Testing Validation In Large-Scale Additive Manufacturing Carbon Composite, Luis Alfonso Camacho

Open Access Theses & Dissertations

Testing for mechanical properties for additive manufacturing has been based on already existing standards for traditional manufacturing methods. For composites in large scale additive manufacturing there is a research gap in bond strength and fracture toughness for a single layer interface. By using Double cantilever beam Mode I, this thesis manuscript validates testing parameters and protocols to describe the intricacies of ABS matrix 20 wt.% carbon filled composite, specifically on the layer-to-layer interface. Studies suggest that fracture toughness is sensitive to process parameters, like deflection speed and sharpened crack tip at the layer interface of BAAM 3D printed part and …


Glass Bubbles Grafted With Polymer Brushes For Liquid Hydrocarbon Fire Extinguishment, Randall Snipes 2023 Clemson University

Glass Bubbles Grafted With Polymer Brushes For Liquid Hydrocarbon Fire Extinguishment, Randall Snipes

All Dissertations

The current most efficient solution to fighting liquid pool fires involves the use of firefighting foams containing fluorinated surfactants. The physiochemical properties of these foams are considerably different to all other currently available firefighting foams. Fluorinated surfactants lower the surface tension to a point where the foam solution draining from the foam structure forms a continuous aqueous film on the surface of a volatile hydrocarbon fuel, adding an additional barrier to fuel vapor diffusion to the burning fire. For this reason, these foams qualify as aqueous film forming foams (AFFFs). However, fluorinated compounds are extremely harmful for the environment due …


Life Cycle Energy Assesment Of Advanced Fiber Reinforced Composite Design And Manufacturing Methodologies, Urjit Lad 2023 Clemson University

Life Cycle Energy Assesment Of Advanced Fiber Reinforced Composite Design And Manufacturing Methodologies, Urjit Lad

All Theses

Automotive industry at large is focused on vehicle light-weighting since a 6%-8% increase in fuel efficiency can be achieved with a 10% reduction in vehicle weight [1]. With the growing demand for cost-effective and sustainable light weighting of automobile structures, interest has increased in the application of fiber reinforced plastic (FRP) composites for use in the Body-in-White (BiW), which can account for up to 40% of the total vehicle weight. Traditional FRP composite manufacturing processes like vacuum assisted resin transfer molding, autoclave consolidation or use of automated fiber placement have been successfully used for marine and aerospace applications. However, these …


Digital Commons powered by bepress