Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

994 Full-Text Articles 1,648 Authors 512,960 Downloads 86 Institutions

All Articles in Polymer and Organic Materials

Faceted Search

994 full-text articles. Page 1 of 45.

Polymer Based Energy Storage And Thermal Management On Textile Devices, Wesley A. Viola 2023 University of Massachusetts Amherst

Polymer Based Energy Storage And Thermal Management On Textile Devices, Wesley A. Viola

Doctoral Dissertations

Humans developed textiles to manage thermal energy transfer with the environment and support homeostasis in a wide range of climates. With the anticipation of wearable technologies to transform healthcare via early, pre-symptomatic detection of illness, there is now a demand for electrical energy storage to support such on-body devices. Finding energy materials to merge seamlessly with textiles is basic requirement to ensure widespread adoption of wearable health monitors.

Here we use a vapor deposition process to conformally coat ordinary fabrics with the doped conjugated polymer poly(3,4 ethylenedioxythiophene) (PEDOT-Cl), a soft material which possesses electronic and redox capabilities. We demonstrate PEDOT-Cl …


Effect Of Chemical Identity And Morphology On Amphiphilic-Zwitterionic Block Copolymer Membranes, 2023 University of Massachusetts Amherst

Effect Of Chemical Identity And Morphology On Amphiphilic-Zwitterionic Block Copolymer Membranes

Doctoral Dissertations

Amphiphilic block copolymers have gained a broad research interest attributed to their self-assembly properties over a range of pH, temperature, and ionic strength. Polyzwitterions have attracted special attention due to their hydrophilicity, charge sensitivity and coulombic attraction of the opposite charges over a range of environments making them a popular material of study in the field of stimuli responsive systems, for example in self-healing hydrogels, and water transport membranes. Combining the stimuli responsiveness and higher hydrophilicity of zwitterionic polymers with self-assembly behavior of amphiphilic block copolymers created an interest to study the effect of composition and identity of the zwitterionic …


Optimization Of Acrylonitrile Butadiene Styrene Filament 3d Printing Process Parameters Based On Mechanical Test, Raja S, Rajeswari N 2023 Managing Director, Research and Development, Mr.R BUSINESS CORPORATION,Karur,Tamilnadu,India

Optimization Of Acrylonitrile Butadiene Styrene Filament 3d Printing Process Parameters Based On Mechanical Test, Raja S, Rajeswari N

International Journal of Mechanical and Industrial Engineering

This research paper's main goal is to improve the printing parameters that can be used in the 3D Printing Material Extrusion production method in order to get the best printing parameters for Acrylonitrile Butadiene Styrene (ABS) filament with the tensile test in the shortest possible time. The printing parameters that can be employed on 3D printing material extrusion machines include the extruder temperature, layer height, printing speed, and shell count. Also, tensile specimens in accordance with the ASTM (American Society for Testing and Materials) D638 standard were created utilizing ABS filament and the aforementioned adjusted printing settings. The most effective …


Polyethersulfone Thin-Film Nanocomposite Membrane Embedded With Amine-Functionalized Graphene Oxide For Desalination Applications, Ahmed Bahaeldin 2023 American University in Cairo

Polyethersulfone Thin-Film Nanocomposite Membrane Embedded With Amine-Functionalized Graphene Oxide For Desalination Applications, Ahmed Bahaeldin

Theses and Dissertations

Thin-film nanocomposite (TFN) desalination membranes were prepared based on a polyethersulfone (PES) support, where the polyamide (PA) layer was embedded with amine-functionalized graphene oxide (GO). The effect of adding various concentrations of functionalized and un-functionalized GO on the desalination performance, hydrophilicity, and morphology of the membranes was additionally assessed throughout this work. Scanning electron microscopy (SEM) measurements were used to assess the morphology of the membranes in combination with Brunauer-Emmett-Teller (BET) analysis. Contact angle measurements were used to gauge the hydrophilicity of the synthesized membranes. The membrane with the best desalination performance contained 1x10-3 wt/vol% of functionalized GO in …


Effect Of Platelet Length And Stochastic Morphology On Flexural Behavior Of Prepreg Platelet Molded Composites, Siavash Sattar, Benjamin Beltran Laredo, Sergii G. Kravchenko, Oleksandr G. Kravchenko 2023 Old Dominion University

Effect Of Platelet Length And Stochastic Morphology On Flexural Behavior Of Prepreg Platelet Molded Composites, Siavash Sattar, Benjamin Beltran Laredo, Sergii G. Kravchenko, Oleksandr G. Kravchenko

Mechanical & Aerospace Engineering Faculty Publications

Prepreg platelet molding compound (PPMC) can be used to create structural grade material with a heterogeneous mesoscale morphology. The present work considered various platelet lengths of the prepreg system IM7/8552 to study the effect of platelet length on the flexural behavior of PPMC composite. A progressive failure finite-element analysis was used to understand competing failure modes in PPMC with the different platelet length. The interlaminar and in-plane damage mechanisms were employed to describe complex failure modes within the mesostructure of PPMCs. Experimental results of the flexural tests of the PPMC with different platelet length sizes were used to validate the …


Elastoplastic Quasi-Static And Impact Load Response Of Steel Structure Sub-Assemblage With Cfrp Strips, Ali Al Aloosi, Zia Razzaq 2023 Old Dominion University

Elastoplastic Quasi-Static And Impact Load Response Of Steel Structure Sub-Assemblage With Cfrp Strips, Ali Al Aloosi, Zia Razzaq

Civil & Environmental Engineering Faculty Publications

Presented in this paper is the outcome of an experimental investigation of the elastoplastic quasi-static and impact load response of a steel sub-assemblage constructed using a pair of hollow square section members with or without Carbon Fiber Reinforced Polymer (CFRP) strips. The sub-assemblage consists of a long structural member welded to a short member, thus representing a typical combination of a column and a beam on the face of a multi-story steel building frame. The column is subjected to a lateral quasi-static or impact load. Tests are conducted on four separate steel sub-assemblages. The first two tests are conducted with …


Defining The Proper Operating Time For The Septa Extractor, Abigail Jones 2023 The University of Akron

Defining The Proper Operating Time For The Septa Extractor, Abigail Jones

Williams Honors College, Honors Research Projects

Anionic polymerizations are a common type of reaction used to produce synthetic rubber. During these reactions, it is necessary to charge initiators, modifiers, and other substances, through pressurized containers that are sealed with rubber septa. These septa prevent oxygen and moisture from entering the pressurized container, and the reactor, though they need to be cleaned before use to remove other impurities. Currently a glass Soxhlet Extractor is used to remove such impurities, and though effective, it has a limited capacity, so it has to run frequently. This limitation led to the commissioning of the Septa Extractor, which is an automated …


Drop Wetting And Sliding On Soft, Swollen Elastomers, Zhuoyun Cai 2023 University of Kentucky

Drop Wetting And Sliding On Soft, Swollen Elastomers, Zhuoyun Cai

Theses and Dissertations--Chemical and Materials Engineering

Soft, slippery surfaces have gained increasing attention due to their wide range of potential applications, for example in self-cleaning, anti-fouling, liquid collection, and more. One design approach in creating slippery surfaces is using a swollen elastomer, which is a polymer network swollen with a lubricant. This type of surface may be beneficial for longer-term use than standard lubricant-infused surfaces, and provides a versatile surface with tunable mechanical properties. Hence, understanding the physics of soft surface interactions is important for fundamental soft matter physics, biomaterials, adhesives, and coatings. This research experimentally investigates wetting on soft infused networks, with the aim of …


Higher-Order Effects In Biaxial Flexure Of Gfrp I-Section Beams, Zia Razzaq, Faridoon Z. Razzaq 2023 Old Dominion University

Higher-Order Effects In Biaxial Flexure Of Gfrp I-Section Beams, Zia Razzaq, Faridoon Z. Razzaq

Civil & Environmental Engineering Faculty Publications

A theoretical study of Glass Fiber Reinforced Polymer (GFRP) beams subjected to biaxial bending moments is presented with a focus on the influence of higher-order effects on maximum normal stresses. It is shown that the biaxial bending type of loading causes a dramatic increase in the maximum normal stress for a GFRP beam when induced torsional effects are included. The study demonstrates that the traditional first-order theory can grossly underestimate the maximum normal stress in a GFRP beam. Based on the numerical results presented using a higher-order theory which also accounts for induced warping normal stresses, the maximum normal stress …


Enhanced Performance Of 3d Electroactive Polymer Transducers Via Hierarchical Structures, Frederick B. Holness 2022 The University of Western Ontario

Enhanced Performance Of 3d Electroactive Polymer Transducers Via Hierarchical Structures, Frederick B. Holness

Electronic Thesis and Dissertation Repository

Conjugated polymers (CPs) are a class of polymers that exhibit a change in size or shape in response to electrical stimuli. The unique combination of electrical and mechanical properties facilitates the fabrication of novel devices in a broad range of applications including: sensors, actuators, and lab-on-a-chip systems. The alternating single and double bonds along the polymer chain of CPs enables their electroactive properties but is also responsible for processability associated with CPs that has limited fabrication methods. Recently a photosensitive CP composite enabling additive manufacturing (AM) of 3D CP structures was developed. However, the introduction of a copolymer for mechanical …


Nanocomposites For Applications In Ultracapacitors Based Energy Storage Systems, Duy Pham, Jake Ivirn, Jacob Dileonardi, Ben McKinney, Ashish Aphale 2022 Kennesaw State University

Nanocomposites For Applications In Ultracapacitors Based Energy Storage Systems, Duy Pham, Jake Ivirn, Jacob Dileonardi, Ben Mckinney, Ashish Aphale

Symposium of Student Scholars

Electrochemical capacitors also known as ultracapacitor is a potential technology for modern energy storage due to their high performance of charge capacity and fast charge-discharge rates. The superior performance of ultracapacitors will help to meet demands for energy systems in applications such as transportation. Ultracapacitor device consists of electrodes, a polymeric separator, and an electrolyte. Under the applied voltage, the migration of ions between two porous electrodes from the bulk of the electrolyte governs the performance of such devices. In this work, we present experimental research on the synthesis of different electrode materials using atomically thick graphene and conducting polymers. …


Development Of Electrochemical Sensors For The Detection Of Trace Contaminants, Quang Lam, Ashish Aphale, Duy Pham 2022 Kennesaw State University

Development Of Electrochemical Sensors For The Detection Of Trace Contaminants, Quang Lam, Ashish Aphale, Duy Pham

Symposium of Student Scholars

Several industrial processes, such as stainless steel fabrication and textiles, produce heavy metal byproducts such as chromium. These heavy metals have detrimental effects on the surrounding environments and humans. Recently, electrochemical-driven sensors have been studied and show great potential in miniaturization while still providing measurements at a low cost. In addition, atomically thin allotropes of carbon, graphene, and graphene oxide have shown remarkable results in producing a highly responsive and selective sensor platform. These results are due to their excellent electrical conductivity, high surface area for utility, and physicochemical stability. The existing challenge for electrochemical-driven sensors is understanding the molecular …


Nanoclays And Curcumin Based Food Packaging Material For Intelligent Food Packaging Applications, Kalpani Y. Perera, Swarna Jaiswal, Amit K. Jaiswal, Shubham Sharma 2022 Technological University Dublin

Nanoclays And Curcumin Based Food Packaging Material For Intelligent Food Packaging Applications, Kalpani Y. Perera, Swarna Jaiswal, Amit K. Jaiswal, Shubham Sharma

Articles

Bionanocomposite packaging eco-friendly alternatives with enhanced characteristics. This study aimed to develop a bionanocomposite intelligent packaging. Sodium alginate, gelatin, Curcumin (Cur), glycerol, and Nanoclay (NC) films were prepared. The influences of nanoclay and curcumin on the surface, optical, mechanical, chemical, barrier, and pH-indicating properties were studied. The results showed that the lightness of films was reduced by 1.28 folds compared to NC (control) film, while the yellowness of films increased by 5.82 folds. Film transparency was reduced by 9.3 folds and a 3.46 folds increase in UV barrier properties was observed compared to NC (control) film. The highest tensile strength …


Cold Plasma Technology In Food Packaging, Kalpani Y. Perera, Jack Prendeville, Amit K. Jaiswal, Swarna Jaiswal 2022 Technological University Dublin

Cold Plasma Technology In Food Packaging, Kalpani Y. Perera, Jack Prendeville, Amit K. Jaiswal, Swarna Jaiswal

Articles

Cold plasma (CP) is an effective strategy to alter the limitations of biopolymer materials for food packaging applications. Biopolymers such as polysaccharides and proteins are known to be sustainable materials with excellent film-forming properties. Bio-based films can be used as an alternative to traditional plastic packaging. There are limitations to biopolymer packaging materials such as hydrophobicity, poor barrier, and thermos-mechanical properties. For this reason, biopolymers must be modified to create a packaging material with the desired applicability. CP is an effective method to enhance the functionality and interfacial features of biopolymers. It etches the film surface allowing for better adhesion …


Exploring The Effect Of Environmental Degradation On The Shape Memory Properties Of Polymers, Jorge Mario Avila 2022 University of Texas at El Paso

Exploring The Effect Of Environmental Degradation On The Shape Memory Properties Of Polymers, Jorge Mario Avila

Open Access Theses & Dissertations

A key detriment of the use of polymers by our society is the negative effect this material class has had on the environment. A category of polymers known as shape memory polymers (SMP)s have the ability to return to a programmed original shape form after deformation to a temporary shape by using stimuli such as temperature, electrical pulses and even magnetism. The shape memory effect allows for some polymers to heal if they are damaged. This ability to heal means that components made from these materials can be reused rather than thrown away if they are damaged. The work presented …


Design, Fabrication, And Characterization Of Conjugated Polymeric Electrochemical Memristors As Neuromorphic/Integrated Circuits, Benjamin Grant 2022 Clemson University

Design, Fabrication, And Characterization Of Conjugated Polymeric Electrochemical Memristors As Neuromorphic/Integrated Circuits, Benjamin Grant

All Dissertations

Organic materials are promising candidates for future electronic devices compared to the complementing inorganic materials due to their ease of processability, use, and disposal, low cost of fabrication, energy efficiency, and flexible nature toward implementation as flexible and non-conformal devices.With that in mind, electrochemical materials have been widely demonstrated with commercial use as sensors, displays, and a variety of other electronic devices. As Moore's law predicts the increase in the density of transistors on a chip, the requirement to create either smaller transistors or the replacement of the transistor device entirely is apparent. Memory resistors, coined ``memristor", are variable resistive …


Enhancing The Performance Of Poly(3-Hexylthiophene) Based Organic Thin-Film Transistors Using An Interface Engineering Method, Eyob Negussie Tarekegn 2022 Clemson University

Enhancing The Performance Of Poly(3-Hexylthiophene) Based Organic Thin-Film Transistors Using An Interface Engineering Method, Eyob Negussie Tarekegn

All Dissertations

An original design and photolithographic fabrication process for poly(3-hexylthiophene-2, 5-diyl) (P3HT) based organic thin-film transistors (OTFTs) is presented. The structure of the transistors was based on the bottom gate bottom contact OTFT. The fabrication process was efficient, cost-effective, and relatively straightforward to implement. Current–voltage (I-V) measurements were performed to characterize the primary electronic properties of the transistors. The measured mobility of these transistors was significantly higher than most results reported in the literature for other similar bottom gate bottom contact P3HT OTFTs. The higher mobility is explained primarily by the effectiveness of the fabrication process in keeping the interfacial layers …


Hierarchical Structure And Material Integration For Electrocatalytic Co2 Reduction, Hamed Mehrabi 2022 University of Arkansas, Fayetteville

Hierarchical Structure And Material Integration For Electrocatalytic Co2 Reduction, Hamed Mehrabi

Graduate Theses and Dissertations

CO2 released by the combustion of fossil fuels is driving significant changes to the earth’sclimate. The natural cycle for removing CO2 from the atmosphere, namely photosynthesis, cannot keep up with the rate at which it is being added. Developing engineering approaches to remove CO2 from the atmosphere is becoming essential to reduce these effects. Removal leads to further issues of carbon sequestration and favorable CO2 reuse strategies, including the electrochemical transformation of recovered CO2 to useful products such as fuels and materials. Copper is an important electrocatalyst for the CO2 reduction reaction (CO2RR) because of its unique capability for producing …


Optimized 3d-Printing Of Carbon Fiber-Reinforced Polyether-Ether-Ketone (Cfr-Peek) For Use In Overmolded Lattice Composite, Ryan C. Ogle 2022 University of Tennessee, Knoxville

Optimized 3d-Printing Of Carbon Fiber-Reinforced Polyether-Ether-Ketone (Cfr-Peek) For Use In Overmolded Lattice Composite, Ryan C. Ogle

Masters Theses

Current orthopedic implants are overwhelmingly composed from metallic materials. These implants show superior mechanical properties, but this can additionally result in stress shielding due to a modulus mismatch between the bone tissue and implanted device. Polymeric implants reduce this stress shielding effect but have much lower mechanical properties, limiting their use. Polylactic acid (PLA) is a widely used biodegradable thermoplastic polymer, however, its use has been limited by the polymer’s mechanical properties and rapid loss of strength during degradation in vivo. Polyether-ether-ketone (PEEK) is another common biocompatible polymer , with chemical and mechanical properties which make it a popular alternative …


Sustainable Material For Urea Delivery Based On Chitosan Cross-Linked By Glutaraldehyde Saturated Toluene: Characterization And Determination Of The Release Rate Mathematical Model, Jayanudin Jayanudin, Retno S. D. Lestari, Indar Kustiningsih, Dandi Irawanto, Rozak Rozak, Reyonaldo L. A. Wardana, Fakhri Muhammad 2022 Chemical Engineering Department, Universitas Sultan Ageng Tirtayasa

Sustainable Material For Urea Delivery Based On Chitosan Cross-Linked By Glutaraldehyde Saturated Toluene: Characterization And Determination Of The Release Rate Mathematical Model, Jayanudin Jayanudin, Retno S. D. Lestari, Indar Kustiningsih, Dandi Irawanto, Rozak Rozak, Reyonaldo L. A. Wardana, Fakhri Muhammad

Karbala International Journal of Modern Science

The aims of this study were to characterize the urea-loaded chitosan microspheres and determine the release kinetic constants and diffusion coefficients. An emulsion cross-linking method was used to prepare the urea-loaded chitosan microspheres. Urea was dissolved in a solution of chitosan then put into vegetable oil and stirred to form an emulsion. Glutaraldehyde saturated toluene (GST) was added into the emulsion dropwise while continuously stirring for the solidification process. Chitosan microspheres filled with urea were washed, dried, and then analyzed. Characterization of the urea-loaded chitosan microspheres was conducted using a scanning electron microscope (SEM), Raman spectroscopy, X-ray diffraction, and particle …


Digital Commons powered by bepress