Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics Commons

Open Access. Powered by Scholars. Published by Universities.®

5,651 Full-Text Articles 7,637 Authors 3,622,624 Downloads 138 Institutions

All Articles in Electrical and Electronics

Faceted Search

5,651 full-text articles. Page 2 of 199.

Improved Methodology For Conducted Emi Assessment Of Power Electronics And Line Impedance Measurement, Mark Anthony Didat 2023 Mississippi State University

Improved Methodology For Conducted Emi Assessment Of Power Electronics And Line Impedance Measurement, Mark Anthony Didat

Theses and Dissertations

Electromagnetic Interference (EMI), primarily common mode (CM), is problematic in a wide range of electronic circuits due to its propensity to radiate, particularly in high power applications. It is routine for much effort and resources to be dedicated to its characterization and reduction as EMI compliance is a requirement for most electronic systems and devices, including power electronics. Many well-known factors contribute to a system’s EMI performance including intentional coupling from system components as well as unintentional coupling from parasitics. Sources of intentional coupling may include Y-capacitors intended to mitigate EMI as part of a filter. Unintentional coupling is more …


Energy Harvesting Sensors And Their Role In Fostering Sustainable Air Quality Monitoring, Tomas Valentin, Li Geng 2023 CUNY New York City College of Technology

Energy Harvesting Sensors And Their Role In Fostering Sustainable Air Quality Monitoring, Tomas Valentin, Li Geng

Publications and Research

This research presents a comprehensive investigation into Energy Harvesting Sensors and their role in fostering sustainable air quality monitoring. The primary objective is to explore the viability of energy harvesting technologies in energizing sensor networks devoted to the real-time collection of air quality data, emphasizing the reduction of environmental impact and maintenance demands. The study delves into the integration of energy harvesting mechanisms, including solar and piezoelectric kinetic energy, to power advanced sensor nodes capable of detecting pollutants, particulate matter, and gas concentrations. The findings of this research highlight the significant benefits of energy harvesting sensors, including enhanced sustainability, long-term …


Static And Dynamic State Estimation Applications In Power Systems Protection And Control Engineering, Ibukunoluwa Olayemi Korede 2023 University of Tennessee, Knoxville

Static And Dynamic State Estimation Applications In Power Systems Protection And Control Engineering, Ibukunoluwa Olayemi Korede

Doctoral Dissertations

The developed methodologies are proposed to serve as support for control centers and fault analysis engineers. These approaches provide a dependable and effective means of pinpointing and resolving faults, which ultimately enhances power grid reliability. The algorithm uses the Least Absolute Value (LAV) method to estimate the augmented states of the PCB, enabling supervisory monitoring of the system. In addition, the application of statistical analysis based on projection statistics of the system Jacobian as a virtual sensor to detect faults on transmission lines. This approach is particularly valuable for detecting anomalies in transmission line data, such as bad data or …


Fourier Analysis And Optimization Of Inductive Wireless Power Transfer For Electric Vehicle Charging, Andrew P. Foote 2023 University of Tennessee, Knoxville

Fourier Analysis And Optimization Of Inductive Wireless Power Transfer For Electric Vehicle Charging, Andrew P. Foote

Doctoral Dissertations

With the growth of electric vehicle (EV) popularity, different charging options to increase user convenience and reduce charging time such as high power wireless charging are increasingly being developed and researched. Inductive wireless power transfer (WPT) systems for EVs must meet specifications such as stray field, battery power and voltage operating range, efficiency, and ground clearance. The coil geometry and design have a large impact in meeting these constraints. Typical design approaches include iterative analysis of predetermined coil geometries to identify candidates that meet these constraints.

This work instead directly generates WPT coil shapes and magnetic fields to meet specifications …


Enhancing Power System Flexibility Through Efficient Integration Of Facts And Electric Vehicles, Izaz Zunnurain 2023 University of Texas at El Paso

Enhancing Power System Flexibility Through Efficient Integration Of Facts And Electric Vehicles, Izaz Zunnurain

Open Access Theses & Dissertations

The global transition towards a cleaner and sustainable energy landscape has led to the integration of renewable energy sources and electric vehicles (EVs) into the modern power system, along with their complexities. Due to the high penetration of renewable energy sources and rapid growth of EVs, the power grid often experiences congestion, increasing the overall operating cost of the power system and directly jeopardizing the power stability and quality of the grid. A flexible and resilient power infrastructure that can accommodate the intermittency of renewable energy sources and the adoption of EVs is very much required to ensure the reliability …


Development Of Metaheuristic Algorithms For The Efficient Allocation Of Power Flow Control Devices, Eduardo Jose Castillo Fatule 2023 University of Texas at El Paso

Development Of Metaheuristic Algorithms For The Efficient Allocation Of Power Flow Control Devices, Eduardo Jose Castillo Fatule

Open Access Theses & Dissertations

No abstract provided.


A Modular Framework For Surface-Embedded Actuation And Optical Sensing In Soft Robots., Paul Bupe Jr 2023 University of Louisville

A Modular Framework For Surface-Embedded Actuation And Optical Sensing In Soft Robots., Paul Bupe Jr

Electronic Theses and Dissertations

This dissertation explores the development and integration of modular technologies in soft robotics, with a focus on the OptiGap sensor system. OptiGap serves as a simple, flexible, cost-effective solution for real-time sensing of bending and deformation, validated through simulation and experimentation. Working as part of an emerging category of soft robotics called Soft, Curved, Reconfigurable, Anisotropic Mechanisms, or SCRAMs, this research also introduces the Thermally-Activated SCRAM Limb (TASL) technology, which employs shape-memory alloy (SMA) wire embedded in curved sheets for surface actuation and served as the initial inspiration for OptiGap. In addition, the EneGate system is presented as a complementary …


Gpu Based Monte Carlo Estimation Of Eddy Current Losses In Electromagnetic Coil-Core System, Adwaith Ravichandran 2023 Florida Institute of Technology

Gpu Based Monte Carlo Estimation Of Eddy Current Losses In Electromagnetic Coil-Core System, Adwaith Ravichandran

Theses and Dissertations

A novel parallelizable probabilistic approach to model eddy currents in AC electromagnets is presented in this research. Consequently, power loss associated with the formation of these eddy currents is estimated and validated using experimental data. Furthermore, predicting the effect of ferromagnetic alternating field enhancement on power loss in the source excitation winding has been an active area of research. Unlike a stationary field, an alternating sinusoidal field diffuses partially into the ferromagnetic material leading to a predictably sub-optimal field enhancement. To model these physics, finite element techniques employ nonlinear iterative solvers which are time consuming. A novel method is developed …


Investigating Mems Devices In Flow Conditions Relevant To Flow-Through Systems., Mohammad Shafquatul Islam 2023 University of Louisville

Investigating Mems Devices In Flow Conditions Relevant To Flow-Through Systems., Mohammad Shafquatul Islam

Electronic Theses and Dissertations

Advancements in microscale actuating technologies has substantially expanded the possibilities of interacting with the surrounding environment. Microstructures that deflect in response to mechanical forces are one of the largest application areas of microelectromechanical systems (MEMS). MEMS devices, functioning as sensors, actuators, and support structures, find applications in inertial sensors, pressure sensors, chemical sensors, and robotics, among others. Driven by the critical role of catalytic membrane reactors, this dissertation aims to evaluate enzyme activity on polymeric membranes and explore how fabrication methods from the field of Electrical and Computer Engineering (ECE) can incorporate sensing and actuation into these porous surfaces. Toward …


Use Of Digital Twins To Mitigate Communication Failures In Microgrids, Andrew Eggebeen 2023 University of Wisconsin-Milwaukee

Use Of Digital Twins To Mitigate Communication Failures In Microgrids, Andrew Eggebeen

Theses and Dissertations

This work investigates digital twin (DT) applications for electric power system (EPS) resilience. A novel DT architecture is proposed consisting of a physical twin, a virtual twin, an intelligent agent, and data communications. Requirements for the virtual twin are identified. Guidelines are provided for generating, capturing, and storing data to train the intelligent agent. The relationship between the DT development process and an existing controller hardware-in-the-loop (CHIL) process is discussed. To demonstrate the proposed DT architecture and development process, a DT for a battery energy storage system (BESS) is created based on the simulation of an industrial nanogrid. The creation …


Project Thetis: A Low-Cost, Low-Profile Inertial Data Logger, Braidan Duffy 2023 Florida Institute of Technology

Project Thetis: A Low-Cost, Low-Profile Inertial Data Logger, Braidan Duffy

Theses and Dissertations

This thesis details the design, testing, calibration, and verification of a nine degree of freedom inertial measurement data logger for use with floating bodies. The instrument was conceived to address limitations of equipment used in classes within the Ocean Engineering department at Florida Institute of Technology. By meeting with several stakeholders and end users, a series of stakeholder requirements, capabilities, and component-level requirements were de- veloped that informed the design constraints. There were several hardware iterations of the board, culminating in Revision F5 which was extensively tested and proven. The design was inspected after testing concluded to determine which capabilities …


Cyber-Threat Detection Strategies Governed By An Observer And A Neural-Network For An Autonomous Electric Vehicle, Douglas Scruggs 2023 Clemson University

Cyber-Threat Detection Strategies Governed By An Observer And A Neural-Network For An Autonomous Electric Vehicle, Douglas Scruggs

All Theses

A pathway to prevalence for autonomous electrified transportation is reliant upon accurate and reliable information in the vehicle’s sensor data. This thesis provides insight as to the effective cyber-attack placements on an autonomous electric vehicle’s lateral stability control system (LSCS). Here, Data Integrity Attacks, Replay Attacks, and Denial-of-Service attacks are placed on the sensor data describing the vehicle’s actual yaw-rate and sideslip angle. In this study, there are three different forms of detection methods. These detection methods utilize a residual metric that incorporate sensor data, a state-space observer, and a Neural-Network. The vehicle at hand is a four-motor drive autonomous …


A Case Study In Cmos Design Scaling For Analog Applications: The Ringamp Ldo, Steven Corum 2023 University of Tennessee, Knoxville

A Case Study In Cmos Design Scaling For Analog Applications: The Ringamp Ldo, Steven Corum

Masters Theses

As CMOS process nodes scale to smaller feature sizes, process optimizations are made to achieve improvements in digital circuit performance, such as increasing speed and memory, while decreasing power consumption. Unfortunately for analog design, these optimizations usually come at the expense of poorer transistor performance, such as reduced small signal output resistance and increased channel length modulation. The ring amplifier has been proposed as a digital solution to the analog scaling problem, by configuring digital inverters to function as analog amplifiers through deadzone biasing. As digital inverters naturally scale, the ring amplifier is a promising area of exploration for analog …


Hybrid Wall Outlet For Ac Or Dc Power Delivery, Garrett Knoller, Kerr Allan, Greg Perini 2023 California Polytechnic State University, San Luis Obispo

Hybrid Wall Outlet For Ac Or Dc Power Delivery, Garrett Knoller, Kerr Allan, Greg Perini

Electrical Engineering

The goal of this project is to develop hybrid DC and AC wall outlets for an efficient, flexible power interface. A DC plug standard is also proposed to allow DC devices to be safely powered by the outlet with the correct DC voltage for each device. The primary objective is to create a power outlet compatible with the proposed DC plug as well as NEMA 5-15 AC plugs, enabling the same outlet to power both types of load as needed. The outlet is intended for buildings and systems transitioning to an isolated DC grid to encourage DC development and adoption. …


Low-Power, Event-Driven System On A Chip For Charge Pulse Processing Applications, Joseph A. Schmitz 2023 University of Nebraska-Lincoln

Low-Power, Event-Driven System On A Chip For Charge Pulse Processing Applications, Joseph A. Schmitz

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

This dissertation presents an electronic architecture and methodology capable of processing charge pulses generated by a range of sensors, including radiation detectors and tactile synthetic skin. These sensors output a charge signal proportional to the input stimulus, which is processed electronically in both the analog and digital domains. The presented work implements this functionality using an event-driven methodology, which greatly reduces power consumption compared to standard implementations. This enables new application areas that require a long operating time or compact physical dimensions, which would not otherwise be possible. The architecture is designed, fabricated, and tested in the aforementioned applications to …


Ism-Band Energy Harvesting Wireless Sensor Node, FNU Naveed 2023 University of Arkansas-Fayetteville

Ism-Band Energy Harvesting Wireless Sensor Node, Fnu Naveed

Graduate Theses and Dissertations

In recent years, the interest in remote wireless sensor networks has grown significantly, particularly with the rapid advancements in Internet of Things (IoT) technology. These networks find diverse applications, from inventory tracking to environmental monitoring. In remote areas where grid access is unavailable, wireless sensors are commonly powered by batteries, which imposes a constraint on their lifespan. However, with the emergence of wireless energy harvesting technologies, there is a transformative potential in addressing the power challenges faced by these sensors. By harnessing energy from the surrounding environment, such as solar, thermal, vibrational, or RF sources, these sensors can potentially operate …


Diverse Impacts Of Commercial Ev Charging Load Infrastructure On Electric Power Grid, Antonio Avila 2023 University of Texas at El Paso

Diverse Impacts Of Commercial Ev Charging Load Infrastructure On Electric Power Grid, Antonio Avila

Open Access Theses & Dissertations

With the rising prominence of electric vehicles (EVs) in the transportation sector, this thesis delves into the critical nexus between commercial EVs, charging infrastructure, and their consequential impacts on the power grid. As commercial EVs, particularly medium and heavy-duty variants, gain traction as viable alternatives in the commercial transportation landscape, understanding the intricacies of their charging requirements becomes paramount. This thesis critically examines the technological and logistical dimensions of the charging infrastructure for supporting commercial EVs, evaluating the consequential implications on the power grid and proposing strategies for mitigation through the utilization of Distributed Energy Resources (DERs). In tandem with …


Towards A Spaceworthy Cots Graphics Processing Unit: Hardware Performance Counter Based Symptomatic Fault Detection, Antonio E. Teijeiro 2023 University of Texas at El Paso

Towards A Spaceworthy Cots Graphics Processing Unit: Hardware Performance Counter Based Symptomatic Fault Detection, Antonio E. Teijeiro

Open Access Theses & Dissertations

Ionizing radiation remains an obstacle to bringing graphics processing units (GPU) to space. Since radiation-hardened GPU chips are technically infeasible at the moment, an emphasis has been placed on the adaptation of commercial-off-the-shelf (COTS) GPUs to the space domain. At present, GPU error detection methods require redundant computation. This thesis work explores the utilization of hardware performance counters, special registers useful for monitoring internal GPU hardware events, for symptom-based, lightweight error detection. Hardware performance counters are successfully utilized for the detection of anomalous single event upsets in the L0 instruction cache, the load store unit, the arithmetic and logic unit, …


A Design Strategy To Improve Machine Learning Resiliency Of Physically Unclonable Functions Using Modulus Process, Yuqiu Jiang 2023 University of Wisconsin-Milwaukee

A Design Strategy To Improve Machine Learning Resiliency Of Physically Unclonable Functions Using Modulus Process, Yuqiu Jiang

Theses and Dissertations

Physically unclonable functions (PUFs) are hardware security primitives that utilize non-reproducible manufacturing variations to provide device-specific challenge-response pairs (CRPs). Such primitives are desirable for applications such as communication and intellectual property protection. PUFs have been gaining considerable interest from both the academic and industrial communities because of their simplicity and stability. However, many recent studies have exposed PUFs to machine-learning (ML) modeling attacks. To improve the resilience of a system to general ML attacks instead of a specific ML technique, a common solution is to improve the complexity of the system. Structures, such as XOR-PUFs, can significantly increase the nonlinearity …


Refinement And Performance Analysis Of The Stepped Frequency Microwave Radiometer In Extra Tropical Cyclone Conditions, Jezabel Vilardell Sanchez 2023 University of Massachusetts Amherst

Refinement And Performance Analysis Of The Stepped Frequency Microwave Radiometer In Extra Tropical Cyclone Conditions, Jezabel Vilardell Sanchez

Doctoral Dissertations

The Stepped Frequency Microwave Radiometer (SFMR) is a key instrument for estimation of ocean surface wind speed and rain rate in tropical and extra-tropical cyclones research. Through the observed brightness temperature (TB) over a range of six C-band frequencies, the SFMR derives these key parameters used by hurricane specialists to issue watches and warnings. The information gathered with this instru- ment is also pivotal for post-storm studies and satellite calibrations. Currently, the SFMR requires an average time of 5-10 seconds of averaging to cycle through the six di↵erent frequency channels, so in regions with strong wind/rain gradients such as the …


Digital Commons powered by bepress