Open Access. Powered by Scholars. Published by Universities.®

Transport Phenomena Commons

Open Access. Powered by Scholars. Published by Universities.®

450 Full-Text Articles 535 Authors 198,769 Downloads 47 Institutions

All Articles in Transport Phenomena

Faceted Search

450 full-text articles. Page 8 of 17.

Removal Of Carbamazepine From Drinking Water, Zachary Wiese 2018 University of Arkansas, Fayetteville

Removal Of Carbamazepine From Drinking Water, Zachary Wiese

Chemical Engineering Undergraduate Honors Theses

Due to the increasing prevalence of prescription medication over the past few

decades, pharmaceuticals have accumulated in various water sources. This has become a

public health concern because many pharmaceuticals have limited research on the effects

of chronic low-level exposure. According to the World’s Health Organization (WHO),

traces of pharmaceuticals products have been reported in different water sources such as

surface waters, wastewater, groundwater, and drinking water.[1] One pharmaceutical of

interest that has been detected in water sources is carbamazepine. Carbamazepine is a

common pharmaceutical prescribed for the treatment of seizure disorders, neuropathic

pain, and various psychological disorders. It’s mechanism …


Polymer Nanocomposites Containing High Aspect Ratio Particulates: Innovation In Co-Extruded Multilayer Barrier Films, Kevin Meyers 2018 University of Southern Mississippi

Polymer Nanocomposites Containing High Aspect Ratio Particulates: Innovation In Co-Extruded Multilayer Barrier Films, Kevin Meyers

Dissertations

Delaminated montmorillonite (MMT) clay/ maleic anhydride grafted LLDPE nanocomposite multilayer films with alternating layers of LDPE were produced through multilayer co-extrusion. The MMT concentration within the nanocomposite layers was increased through annealing the films in the melt due to a mismatch in interdiffusion rates of the polymer layers. Analysis of the nanocomposite layers upon annealing revealed that the platelets impinged upon one another resulting in significant improvement in oxygen barrier in the multilayer system, exceeding the results of bulk nanocomposites.

Model analysis demonstrated that increasing the nanoplatelet aspect ratio or initial concentration in the filled layers would lead to even …


Review Of Challenges And Advances In Modification Of Food Package Headspace Gases, Ziynet Boz, Bruce A. Welt, Jeffrey K. Brecht, William Pelletier, Eric McLamore, Gregory A. Kiker, Jason E. Butler 2018 University of Florida

Review Of Challenges And Advances In Modification Of Food Package Headspace Gases, Ziynet Boz, Bruce A. Welt, Jeffrey K. Brecht, William Pelletier, Eric Mclamore, Gregory A. Kiker, Jason E. Butler

Journal of Applied Packaging Research

Modified Atmosphere Packaging (MAP) has been widely used as an effective way to preserve foods. Fresh produce, meat and meat products, seafood, and dairy products can benefit from modified gaseous atmospheres, which are usually achieved by reducing oxygen and increasing carbon dioxide concentrations, within limits, defined by product tolerances. MAP of fresh produce is particularly challenging because products are living and respiring. Respiration rates depend on several factors including temperature, oxygen, and carbon dioxide concentrations. Balancing package permeation with respiration is challenging, often due to limited selection of practical packaging materials. Failing to remain within tolerance limits of products leads …


Mobility Of Nano-Particles In Rock Based Micro-Models, Jagannath Upadhyay 2018 Louisiana State University and Agricultural and Mechanical College

Mobility Of Nano-Particles In Rock Based Micro-Models, Jagannath Upadhyay

LSU Doctoral Dissertations

A confocal micro-particle image velocimetry (C-μPIV) technique along with associated post-processing algorithms is detailed for obtaining three dimensional distributions of nano-particle velocity and concentrations at select locations of the 2.5D (pseudo 3D) Poly(methyl methacrylate) (PMMA) and ceramic micro-model. The designed and fabricated 2.5D micro-model incorporates microchannel networks with 3D wall structures with one at observation wall which resembles fourteen morphological and flow parameters to those of fully 3D actual reservoir rock (Boise Sandstone) at resolutions of 5 and 10 μm in depth and 5 and 25 μm on plane. In addition, an in-situ, non-destructive method for measuring the geometry of …


Pore-Scale Analysis Of Interfacial Instabilities And Impact Of Heterogeneity On Relative Permeability By Lattice Boltzmann Method, Zhipeng Zhu 2018 Louisiana State University and Agricultural and Mechanical College

Pore-Scale Analysis Of Interfacial Instabilities And Impact Of Heterogeneity On Relative Permeability By Lattice Boltzmann Method, Zhipeng Zhu

LSU Master's Theses

Interfacial instabilities occur often during immiscible fluid flow through porous media and their understanding is essential for waterflooding operations or other oil recovery processes. Although many studies including experimental and numerical have been done to reproduce and analyze the interfacial instabilities in porous median, there is still significant knowledge gap in fundamental understanding of these flow instabilities at the pore-scale. In order to better understand the interfacial instabilities phenomenon, the pore-scale simulations are performed. In this study, Lattice Boltzmann Method is used to simulate two different types of interfacial instabilities: viscous fingering and capillary fingering in irregular sphere packs by …


Driven Morphological Evolution Of Crystal Surfaces, Epitaxial Thin Films, And Two-Dimensional Materials: Morphological Stability And Pattern Formation, Lin Du 2018 University of Massachusetts Amherst

Driven Morphological Evolution Of Crystal Surfaces, Epitaxial Thin Films, And Two-Dimensional Materials: Morphological Stability And Pattern Formation, Lin Du

Doctoral Dissertations

Properly controlled applied fields can stabilize planar surface morphology, reduce surface roughness, and drive the formation of intriguing nanoscale morphological features, providing a path toward precise nanopatterning for the development of electronic and photonic materials with optimal functionality. To study the surface morphological evolution of stressed crystalline solids and thin films, we have established a continuum model accounting for stresses, electric fields, temperature gradients, surface energy, wetting potential, and surface diffusional anisotropy. Based on linear stability analysis and self-consistent dynamical simulations, we found that long-wavelength plane-wave perturbations to a planar surface of a uniaxially stressed solid can trigger a nonlinear …


Heat, Charge And Spin Transport Of Thin Film Nanostructures, Devin John Wesenberg 2018 University of Denver

Heat, Charge And Spin Transport Of Thin Film Nanostructures, Devin John Wesenberg

Electronic Theses and Dissertations

Understanding of fundamental physics of transport properties in thin film nanostructures is crucial for application in spintronic, spin caloritronics and thermoelectric applications. Much of the difficulty in the understanding stems from the measurement itself. In this dissertation I present our thermal isolation platform that is primarily used for detection of thermally induced effects in a wide variety of materials. We can accurately and precisely produce in-plane thermal gradients in these membranes, allowing for thin film measurements on 2-D structures. First, we look at thermoelectric enhancements of doped semiconducting single-walled carbon nanotube thin films. We use the Wiedemann-Franz law to calculate …


Investigation On The Potential Of A Co2 Capture System, Downstream Of The Aftertreatment System For A Heavy-Duty Engine Application, Murchana Pathak 2018 Michigan Technological University

Investigation On The Potential Of A Co2 Capture System, Downstream Of The Aftertreatment System For A Heavy-Duty Engine Application, Murchana Pathak

Dissertations, Master's Theses and Master's Reports

The transportation sector accounts for the second largest source of CO2 emissions after power generation. New Corporate Average Fuel Economy (CAFE) regulations are focusing on improving energy through reduced fuel consumption and greenhouse gas emissions. This work investigates the potential of a CO2 capture system downstream of an aftertreatment system for a heavy-duty engine application. Amine absorption has been described as one of the most effective ways to capture CO2 from the exhaust for point sources. Therefore, using thermal-swing absorption process with potassium carbonate (K2CO3) as the absorbent liquid, a process was analyzed …


Characterization Of Rotary Bell Atomizers Through Image Analysis Techniques, Jacob E. Wilson 2018 University of Kentucky

Characterization Of Rotary Bell Atomizers Through Image Analysis Techniques, Jacob E. Wilson

Theses and Dissertations--Mechanical Engineering

Three methods were developed to better understand and characterize the near-field dynamic processes of rotary bell atomization. The methods were developed with the goal of possible integration into industry to identify equipment changes through changes in the primary atomization of the bell. The first technique utilized high-speed imaging to capture qualitative ligament breakup and, in combination with a developed image processing technique and PIV software, was able to gain statistical size and velocity information about both ligaments and droplets in the image data. A second technique, using an Nd:YAG laser with an optical filter, was used to capture size statistics …


Developing A 3d In Vitro Model By Microfluidics, Hung-Ta Chien 2018 CUNY City College

Developing A 3d In Vitro Model By Microfluidics, Hung-Ta Chien

Dissertations and Theses

In vitro tissue models play an important role in providing a platform that mimics the realistic tissue microenvironment for stimulating and characterizing the cellular behavior. In particular, the hydrogel-based 3D in vitro models allow the cells to grow and interact with their surroundings in all directions, thus better mimicking in vivo than their 2D counterparts. The objective of this thesis is to establish a 3D in vitro model that mimics the anatomical and functional complexity of the realistic cancer microenvironment for conveniently studying the transport coupling in porous tissue structures. We pack uniform-sized PEGDA-GelMA microgels in a microfluidic chip to …


Production Of Bio-Oil With Different Oxygen Content And Characterization Of Catalytic Upgrading To Transportation Fuel, Mubarak Mohammed Khlewee 2017 University of Maine

Production Of Bio-Oil With Different Oxygen Content And Characterization Of Catalytic Upgrading To Transportation Fuel, Mubarak Mohammed Khlewee

Electronic Theses and Dissertations

The world’s increasing population requires an increase in transportation fuel production. The lack of production of transportation fuels due to the shortage of fossil fuel resources combined with concerns about global emissions of carbon dioxide from fossil fuel combustion are the two major issues that have driven researchers to actively pursue alternative sources for oil production. Biomass is being considered as an alternative feedstock to produce fuel and chemicals due to its abundance and renewability. It has many features that make it suitable as a source of transportation fuel production. However, the bio-oil produced by the fast pyrolysis process has …


Multiphase Flow Modeling For Design And Optimization Of A Novel Down-Flow Bubble Column, Mutharasu Lalitha Chockalingam 2017 Louisiana State University and Agricultural and Mechanical College

Multiphase Flow Modeling For Design And Optimization Of A Novel Down-Flow Bubble Column, Mutharasu Lalitha Chockalingam

LSU Doctoral Dissertations

The application of the Euler-Euler framework based Computational Fluid Dynamics (CFD) models for simulating the two-phase gas-liquid bubbly flow in down-flow bubble columns is discussed in detail. Emphasis is given towards the modelling and design optimization of a novel down-flow bubble column. The design features of this novel down-flow bubble column and its advantages over a conventional Plunging Jet down-flow bubble column are discussed briefly. Then, some of the present challenges in simulating a conventional Plunging Jet down-flow bubble column in the Euler-Euler framework is highlighted, and a sigmoid function based drag modification function is implemented to overcome those challenges. …


Multiscale Modeling Approach To Understand Active Sites In Non-Conventional Catalyst Layers For Fuel Cell Applications, Diana Constanza Orozco Gallo 2017 University of Tennessee, Knoxville

Multiscale Modeling Approach To Understand Active Sites In Non-Conventional Catalyst Layers For Fuel Cell Applications, Diana Constanza Orozco Gallo

Doctoral Dissertations

Fuel cells development required stable, active and more abundant catalytic materials. Oxygen reduction reaction (ORR) is the key process to enhance better activity and reduce the fabrication costs. Pt-based has proven to be the best catalyst for ORR and greater efforts has been made in terms of reducing the Pt content in the electrodes, reduce electrode thickness and enhance better catalytic activities. To overcome many of the challenges present, the catalyst layer studies are the great importance in the fuel cell community. Understanding catalyst layer with new catalytic materials, and configurations requires the development of methodological approach to relate structure, …


Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha 2017 University of Tennessee, Knoxville

Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha

Doctoral Dissertations

The narrow hydrophobic interior of a carbon nanotube (CNT) poses a barrier to the transport of water and ions, and yet, unexpectedly, numerous experimental and simulation studies have confirmed fast water transport rates comparable to those seen in biological aquaporin channels. These outstanding features of high water permeability and high solute rejection of even dissolved ions that would typically require a lot of energy for separation in commercial processes makes carbon nanotubes an exciting candidate for desalination membranes. Extending ion exclusion beyond simple mechanical sieving by the inclusion of electrostatics via added functionality to the nanotube bears promise to not …


Microbial Desalination Cells With Efficient Platinum Group Metal-Free Cathode Catalysts, Morteza Rezaei Talarposhti 2017 University of New Mexico

Microbial Desalination Cells With Efficient Platinum Group Metal-Free Cathode Catalysts, Morteza Rezaei Talarposhti

Chemical and Biological Engineering ETDs

Iron-nitrogen-carbon based catalyst was used at the cathode of a microbial desalination cell (MDC) and compared with platinum (Pt) and activated carbon (AC) cathode. Fe-N-C catalyst was prepared using nicarbazin (NCB) as organic precursor by sacrificial support method (SSM). Rotating ring disk electrode (RRDE) experiments shows that Fe-NCB had higher electrocatalytic activity compared to AC and Pt. The utilization of Fe-NCB into the cathode improved substantially the performance output with initial maximum power density of 49±2 μWcm-2 in contrast to Pt and AC catalysts which have shown lower values of 34±1 μWcm-2 and 23.5±1.5 μWcm-2, respectively. …


Modeling Of Nanoscale Transport In Mesoporous Membranes, Ashutosh Rathi 2017 University of Massachusetts Amherst

Modeling Of Nanoscale Transport In Mesoporous Membranes, Ashutosh Rathi

Doctoral Dissertations

Mesoporous membranes with pore sizes in the range 2-50 nm provide an energy efficient alternative for separation of mixtures such as CO2 from stack effluents and volatile organic compounds (VOC) from air. Transport mechanisms such as capillary condensation, Knudsen diffusion and surface adsorption help in enrichment of a more condensable component based on the bulk mixture thermodynamics, surface chemistry and geometry of the mesopores. Despite the progress in synthesis techniques, design of better mesoporous materials for targeted separations is still a challenge due to the absence of clear design rules. Modeling techniques can be used to quantify the relevant …


Resilient And Real-Time Control For The Optimum Management Of Hybrid Energy Storage Systems With Distributed Dynamic Demands, Christopher R. Lashway 2017 Florida International University

Resilient And Real-Time Control For The Optimum Management Of Hybrid Energy Storage Systems With Distributed Dynamic Demands, Christopher R. Lashway

FIU Electronic Theses and Dissertations

A continuous increase in demands from the utility grid and traction applications have steered public attention toward the integration of energy storage (ES) and hybrid ES (HESS) solutions. Modern technologies are no longer limited to batteries, but can include supercapacitors (SC) and flywheel electromechanical ES well. However, insufficient control and algorithms to monitor these devices can result in a wide range of operational issues. A modern day control platform must have a deep understanding of the source. In this dissertation, specialized modular Energy Storage Management Controllers (ESMC) were developed to interface with a variety of ES devices. The EMSC provides …


Hybrid Polymer Electrolyte For Lithium-Oxygen Battery Application, Amir Chamaani 2017 Amir Chamaani

Hybrid Polymer Electrolyte For Lithium-Oxygen Battery Application, Amir Chamaani

FIU Electronic Theses and Dissertations

The transition from fossil fuels to renewable resources has created more demand for energy storage devices. Lithium-oxygen (Li-O2) batteries have attracted much attention due to their high theoretical energy densities. They, however, are still in their infancy and several fundamental challenges remain to be addressed. Advanced analytical techniques have revealed that all components of a Li-O2 battery undergo undesirable degradation during discharge/charge cycling, contributing to reduced cyclability. Despite many attempts to minimize the anode and cathode degradation, the electrolyte remains as the leading cause for rapid capacity fading and poor cyclability in Li-O2 batteries. In this …


Experimental And Simulation Studies Of An Oxygen Concentration System Using Pressure/Vacuum Swing Adsorption Technique: System Miniaturization And Prototype Design, Mingfei Pan 2017 The University of Western Ontario

Experimental And Simulation Studies Of An Oxygen Concentration System Using Pressure/Vacuum Swing Adsorption Technique: System Miniaturization And Prototype Design, Mingfei Pan

Electronic Thesis and Dissertation Repository

The miniaturization of a pressure swing adsorption (PSA) oxygen concentrator is of prime significance for portable applications. This work presented a simplified pressure/vacuum swing adsorption (PVSA) cycle with a concentrator prototype design using a deep evacuation step (-0.82 barg) instead of desorption with purge flow to improve the efficiency of oxygen production process and miniaturize the size of the concentrator. The output of the oxygen concentrator is a 50-90 vol.% enriched oxygen stream in a continuous adsorption and desorption cycle (cycle time = 75-90 s). The size of the adsorption column is 3 cm in diameter and 20 cm in …


Modal Phonon Transport Across Interfaces By Non-Equilibrium Molecular Dynamics Simulation, Yang Zhong, Tianli Feng, Xiulin Ruan 2017 Purdue University

Modal Phonon Transport Across Interfaces By Non-Equilibrium Molecular Dynamics Simulation, Yang Zhong, Tianli Feng, Xiulin Ruan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Phonons represent the quantization of lattice vibration, responsible for heat transfer in semiconductors and dielectrics. Phonon heat conduction across interfaces is crucially important for the thermal management of real-life devices such as smartphones, electric vehicles, and satellites. Although recent studies have broadly investigated spectral phonon contribution to lattice thermal conductivity, the mechanism of phonon modal transport across interfaces is still not well-understood. Previous models, including the acoustic mismatch model (AMM) and diffuse mismatch model (DMM), only consider elastic process while neglecting inelastic phonon contributions. Herein, we employ spectral Non-Equilibrium Molecular Dynamics Simulation (NEMD) to probe the temperature and heat flux …


Digital Commons powered by bepress