On The Landscape Of Random Tropical Polynomials,
2018
Claremont Colleges
On The Landscape Of Random Tropical Polynomials, Christopher Hoyt
HMC Senior Theses
Tropical polynomials are similar to classical polynomials, however addition and multiplication are replaced with tropical addition (minimums) and tropical multiplication (addition). Within this new construction, polynomials become piecewise linear curves with interesting behavior. All tropical polynomials are piecewise linear curves, and each linear component uniquely corresponds to a particular monomial. In addition, certain monomial in the tropical polynomial can be trivial due to the fact that tropical addition is the minimum operator. Therefore, it makes sense to consider a graph of connectivity of the monomials for any given tropical polynomial. We investigate tropical polynomials where all coefficients are chosen from …
Neutrosophic Logic: The Revolutionary Logic In Science And Philosophy -- Proceedings Of The National Symposium,
2018
University of New Mexico
Neutrosophic Logic: The Revolutionary Logic In Science And Philosophy -- Proceedings Of The National Symposium, Florentin Smarandache, Huda E. Khalid, Ahmed K. Essa
Branch Mathematics and Statistics Faculty and Staff Publications
The first part of this book is an introduction to the activities of the National Symposium, as well as a presentation of Neutrosophic Scientific International Association (NSIA), based in New Mexico, USA, also explaining the role and scope of NSIA - Iraqi branch. The NSIA Iraqi branch presents a suggestion for the international instructions in attempting to organize NSIA's work. In the second chapter, the pivots of the Symposium are presented, including a history of neutrosophic theory and its applications, the most important books and papers in the advancement of neutrosophics, a biographical note of Prof. Florentin Smarandache in Arabic …
Subset Vertex Graphs For Social Networks,
2018
University of New Mexico
Subset Vertex Graphs For Social Networks, Florentin Smarandache, W.B. Vasantha Kandasamy, K. Ilanthenral
Branch Mathematics and Statistics Faculty and Staff Publications
In this book authors for the first time introduce the notion of subset vertex graph using the vertex set as the subset of the power set P(S), S is assumed in this book to be finite; however it can be finite or infinite. We have defined two types of subset vertex graphs, one is directed and the other one is not directed. The most important fact which must be kept in record is that for a given set of vertices there exists one and only one subset vertex graph be it of type I or type II. Several important and …
Centroidal Voronoi Tessellations With Few Generator Points,
2018
Bard College
Centroidal Voronoi Tessellations With Few Generator Points, Kirill Shakhnovskiy
Senior Projects Spring 2018
A Voronoi tessellation with $n$ generator points is the partitioning of a bounded region in $\rr^2$ into polygons such that every point in a given polygon is closer to its generator point than to any other generator point. A centroidal Voronoi tessellation (CVT) is a Voronoi tessellation where each polygon’s generator point is also its center of mass. In this project I will demonstrate what kinds of CVTs can exists within specific parameters, such as a square or rectangular region, and a set number generator points. I will also prove that the examples I present are the only CVTs that …
On Representations Of The Jacobi Group And Differential Equations,
2018
University of North Florida
On Representations Of The Jacobi Group And Differential Equations, Benjamin Webster
UNF Graduate Theses and Dissertations
In PDEs with nontrivial Lie symmetry algebras, the Lie symmetry naturally yield Fourier and Laplace transforms of fundamental solutions. Applying this fact we discuss the semidirect product of the metaplectic group and the Heisenberg group, then induce a representation our group and use it to investigate the invariant solutions of a general differential equation of the form .
A Journey To The Adic World,
2018
Georgia Southern University
A Journey To The Adic World, Fayadh Kadhem
Electronic Theses and Dissertations
The first idea of this research was to study a topic that is related to both Algebra and Topology and explore a tool that connects them together. That was the entrance for me to the “adic world”. What was needed were some important concepts from Algebra and Topology, and so they are treated in the first two chapters.
The reader is assumed to be familiar with Abstract Algebra and Topology, especially with Ring theory and basics of Point-set Topology.
The thesis consists of a motivation and four chapters, the third and the fourth being the main ones. In the third …
Geometric Serendipity,
2018
Virginia Commonwealth University
Geometric Serendipity, Dakota Becker
Auctus: The Journal of Undergraduate Research and Creative Scholarship
The central focus of my practice is the serendipitous exploration into geometry, symmetry, design, and color. I have found more and more that the affinity I have for hard-edge geometric abstraction is a deeper reflection of the way in which I process my thoughts and surroundings. In the past year, I have sought to challenge myself by questioning the core of my practice and pushing it to go beyond its individual elements. In this way, I seek to create work that is more than its parts. As a result, I have become more purposeful with my designs and push both …
A Categorical Formulation Of Algebraic Geometry,
2017
University of Massachusetts Amherst
A Categorical Formulation Of Algebraic Geometry, Bradley Willocks
Doctoral Dissertations
We construct a category, $\Omega$, of which the objects are pointed categories and the arrows are pointed correspondences. The notion of a ``spec datum" is introduced, as a certain relation between categories, of which one has been given a Grothendieck topology. A ``geometry" is interpreted as a sub-category of $\Omega$, and a formalism is given by which such a subcategory is to be associated to a spec datum, reflecting the standard construction of the category of schemes from the category of rings by affine charts.
Graph Structures In Bipolar Neutrosophic Environment,
2017
University of New Mexico
Graph Structures In Bipolar Neutrosophic Environment, Florentin Smarandache, Muhammad Akram, Muzzamal Sitara
Branch Mathematics and Statistics Faculty and Staff Publications
A bipolar single-valued neutrosophic (BSVN) graph structure is a generalization of a bipolar fuzzy graph. In this research paper, we present certain concepts of BSVN graph structures. We describe some operations on BSVN graph structures and elaborate on these with examples. Moreover, we investigate some related properties of these operations.
Neutrosophic Commutative N-Ideals In Bck-Algebras,
2017
University of New Mexico
Neutrosophic Commutative N-Ideals In Bck-Algebras, Florentin Smarandache, Seok-Zun Song, Young Bae Jun
Branch Mathematics and Statistics Faculty and Staff Publications
The notion of a neutrosophic commutative N -ideal in BCK-algebras is introduced, and several properties are investigated. Relations between a neutrosophic N -ideal and a neutrosophic commutative N -ideal are discussed. Characterizations of a neutrosophic commutative N -ideal are considered.
Ideal Containments Under Flat Extensions And Interpolation On Linear Systems In P2,
2017
University of Nebraska-Lincoln
Ideal Containments Under Flat Extensions And Interpolation On Linear Systems In P2, Solomon Akesseh
Dissertations, Theses, and Student Research Papers in Mathematics
Fat points and their ideals have stimulated a lot of research but this dissertation concerns itself with aspects of only two of them, broadly categorized here as, the ideal containments and polynomial interpolation problems.
Ein-Lazarsfeld-Smith and Hochster-Huneke cumulatively showed that for all ideals I in k[Pn], I(mn) ⊆ Im for all m ∈ N. Over the projective plane, we obtain I(4)< ⊆ I2. Huneke asked whether it was the case that I(3) ⊆ I2. Dumnicki, Szemberg and Tutaj-Gasinska show that if I is the saturated homogeneous radical ideal of the 12 …
Descartes Comes Out Of The Closet,
2017
Vassar College
Descartes Comes Out Of The Closet, Nora E. Culik
Journal of Humanistic Mathematics
While “Descartes Comes Out of the Closet” is ostensibly about a young woman’s journey to Paris, the descriptive detail borrows language and images from Cartesian coordinate geometry, dualistic philosophy, neuroanatomy (the pineal), and projections of three dimensions onto planes. This mathematical universe is counterpointed in the natural language of the suppressed love story that locates the real in the human. Thus, at the heart of the story is the tension between competing notions of mathematics, i.e., as either an independent realm apart from history or as a culturally produced and historical set of practices. Of course, the central character proves …
College Algebra, Trigonometry, And Precalculus (Clayton),
2017
Clayton State University
College Algebra, Trigonometry, And Precalculus (Clayton), Chaogui Zhang, Scott Bailey, Billie May, Jelinda Spotorno, Kara Mullen
Mathematics Grants Collections
This Grants Collection for College Algebra, Trigonometry, and Precalculus was created under a Round Five ALG Textbook Transformation Grant.
Affordable Learning Georgia Grants Collections are intended to provide faculty with the frameworks to quickly implement or revise the same materials as a Textbook Transformation Grants team, along with the aims and lessons learned from project teams during the implementation process.
Documents are in .pdf format, with a separate .docx (Word) version available for download. Each collection contains the following materials:
- Linked Syllabus
- Initial Proposal
- Final Report
Counting Rational Points, Integral Points, Fields, And Hypersurfaces,
2017
The Graduate Center, City University of New York
Counting Rational Points, Integral Points, Fields, And Hypersurfaces, Joseph Gunther
Dissertations, Theses, and Capstone Projects
This thesis comes in four parts, which can be read independently of each other.
In the first chapter, we prove a generalization of Poonen's finite field Bertini theorem, and use this to show that the obvious obstruction to embedding a curve in some smooth surface is the only obstruction over perfect fields, extending a result of Altman and Kleiman. We also prove a conjecture of Vakil and Wood on the asymptotic probability of hypersurface sections having a prescribed number of singularities.
In the second chapter, for a fixed base curve over a finite field of characteristic at least 5, we …
Klein Four Actions On Graphs And Sets,
2017
Gettysburg College
Klein Four Actions On Graphs And Sets, Darren B. Glass
Math Faculty Publications
We consider how a standard theorem in algebraic geometry relating properties of a curve with a (ℤ/2ℤ)2-action to the properties of its quotients generalizes to results about sets and graphs that admit (ℤ/2ℤ)2-actions.
On (Semi)Topological Bcc-Algebras,
2017
University of Sistan and Baluchestan
On (Semi)Topological Bcc-Algebras, F. R. Setudeh, N. Kouhestani
Applications and Applied Mathematics: An International Journal (AAM)
In this paper, we introduce the notion of (semi)topological BCC-algebras and derive here conditions that imply a BCC-algebra to be a (semi)topological BCC-algebra. We prove that for each cardinal number α there is at least a (semi)topological BCC-algebra of order α: Also we study separation axioms on (semi)topological BCC-algebras and show that for any infinite cardinal number α there is a Hausdorff (semi)topological BCC-algebra of order α with nontrivial topology.
Cox Processes For Visual Object Counting,
2017
Portland State University
Cox Processes For Visual Object Counting, Yongming Ma
Student Research Symposium
We present a model that utilizes Cox processes and CNN classifiers in order to count the number of instances of an object in an image. Poisson processes are well suited to events that occur randomly in space, like the location of objects in an image, as well as to the task of counting. Mixed Poisson processes also offer increased flexibility, however they do not easily scale with image size: they typically require O(n3) computation time and O(n2) storage, where n is the number of pixels. To mitigate this problem, we employ Kronecker algebra which takes advantage of the direct product …
Integrating Non-Euclidean Geometry Into High School,
2017
Loyola Marymount University
Integrating Non-Euclidean Geometry Into High School, John Buda
Honors Thesis
The purpose of this project is to provide the framework for integrating the study of non-Euclidean geometry into a high school math class in such a way that both aligns with the Common Core State Standards and makes use of research-based practices to enhance the learning of traditional geometry. Traditionally, Euclidean geometry has been the only strand of geometry taught in high schools, even though mathematicians have developed several other strands. The non-Euclidean geometry that I focus on in this project is what is known as taxicab geometry. With the Common Core Standards for Math Practice pushing students to “model …
Beurling-Lax Type Theorems In The Complex And Quaternionic Setting,
2017
Chapman University
Beurling-Lax Type Theorems In The Complex And Quaternionic Setting, Daniel Alpay, Irene Sabadini
Mathematics, Physics, and Computer Science Faculty Articles and Research
We give a generalization of the Beurling–Lax theorem both in the complex and quaternionic settings. We consider in the first case functions meromorphic in the right complex half-plane, and functions slice hypermeromorphic in the right quaternionic half-space in the second case. In both settings we also discuss a unified framework, which includes both the disk and the half-plane for the complex case and the open unit ball and the half-space in the quaternionic setting.
Student-Created Test Sheets,
2017
Bowling Green State University
Student-Created Test Sheets, Samuel Laderach
Honors Projects
Assessment plays a necessary role in the high school mathematics classroom, and testing is a major part of assessment. Students often struggle with mathematics tests and examinations due to math and test anxiety, a lack of student learning, and insufficient and inefficient student preparation. Practice tests, teacher-created review sheets, and student-created test sheets are ways in which teachers can help increase student performance, while ridding these detrimental factors. Student-created test sheets appear to be the most efficient strategy, and this research study examines the effects of their use in a high school mathematics classroom.