Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 391 - 403 of 403

Full-Text Articles in Physics

Cofe2o4 Nanostructures With High Coercivity, J S. Jung, J H. Lim, K H. Choi, S L. Oh, Y R. Kim, S H. Lee, D A. Smith, K L. Stokes, L Malkinski, C J. O'Connor Jan 2005

Cofe2o4 Nanostructures With High Coercivity, J S. Jung, J H. Lim, K H. Choi, S L. Oh, Y R. Kim, S H. Lee, D A. Smith, K L. Stokes, L Malkinski, C J. O'Connor

Physics Faculty Publications

Nanometer-sized ferrite magnetic materials are the subject of intense research interest due to their potential applications in high-density magnetic information storage. One of the most explored ferrite materials is the cobalt ferrite (CoFe2O4).. We have synthesized cobalt ferrite nanowires using cobalt ferrite nanoparticles in a porous anodic alumina template (AAT). The process of embedding ferrimagnetic particles into the pores was assisted by the magnetic field of a permanent magnet placed in vacuum directly under the substrate. Particles synthesized in the template were subsequently annealed at 600 °C for 2 h in Ar gas forming arrays of cobalt ferrite nanowires inside …


Magneto-Optical Spectra Of Closely Spaced Magnetite Nanoparticles, Damon Allen Smith, Yu A. Barnakov, B L. Scott, S A. White, Kevin L. Stokes Jan 2005

Magneto-Optical Spectra Of Closely Spaced Magnetite Nanoparticles, Damon Allen Smith, Yu A. Barnakov, B L. Scott, S A. White, Kevin L. Stokes

Physics Faculty Publications

The Faraday rotation spectrum of composites containing magnetite nanoparticles is found to be dependent on the interparticle spacing of the constituent nanoparticles. The composite materials are prepared by combining chemically synthesized Fe

3O4 smagnetited nanoparticles s8-nm diameterd and polysmethylmethacrylated . Composites are made containing a range of nanoparticle concentrations. The peak of the main spectral feature depends on nanoparticle concentration; this peak is observed to shift from approximately 470 nm for sdilute compositesd to 540 nm concentrated . We present a theory based on the discrete-dipole approximation which accounts for

optical coupling between magnetite particles. Qualitative correlations between theoretical calculations …


Boron-Rich Semiconducting Boron Carbide Neutron Detector, Andrew D. Harken, Ellen E. Day, Brian W. Robertson, Shireen Adenwalla Jan 2005

Boron-Rich Semiconducting Boron Carbide Neutron Detector, Andrew D. Harken, Ellen E. Day, Brian W. Robertson, Shireen Adenwalla

Shireen Adenwalla Papers

Data on the neutron detection capabilities of a variety of boron carbide/Si heterojunction diodes is presented. The pulse height spectra are compared with previously measured conversion layer devices and the variations in shape and position of the peaks are discussed.


Making Sense Of Nanocrystal Lattice Fringes, P. Fraundorf, Wentao Qin, Peter Moeck, Eric Mandell Jan 2005

Making Sense Of Nanocrystal Lattice Fringes, P. Fraundorf, Wentao Qin, Peter Moeck, Eric Mandell

Physics Faculty Publications and Presentations

The orientation dependence of thin-crystal lattice fringes can be gracefully quantified using fringe-visibility maps, a direct-space analog of Kikuchi maps [Nishikawa and Kikuchi, Nature (London) 121, 1019 (1928)]. As in navigation of reciprocal space with the aid of Kikuchi lines, fringe-visibility maps facilitate acquisition of crystallographic information from lattice images. In particular, these maps can help researchers to determine the three-dimensional lattice of individual nanocrystals, to 'fringe-fingerprint' collections of randomly oriented particles, and to measure local specimen thickness with only a modest tilt. Since the number of fringes in an image increases with maximum spatial-frequency squared, these strategies (with help …


Mechanical Properties Of Carbon Nanotubes Composites, David Hui, Mircea Chipara, Jagannathan Sankar, K. T. Lau Sep 2004

Mechanical Properties Of Carbon Nanotubes Composites, David Hui, Mircea Chipara, Jagannathan Sankar, K. T. Lau

Physics and Astronomy Faculty Publications and Presentations

A critical review of theoretical models aiming to explain the physical properties of composites based on polymeric matrices reinforced with carbon nanotubes is presented. Attention is paid to descriptions based on molecular dynamics, continuum mechanics, and finite element analysis. It is shown that both the continuum mechanics approximation and the finite size element analyses fail to describe composites with very thin interfaces, while the performances of molecular dynamics simulations are still restricted by computer's performances. The limitations of the continuum mechanics approximation are analyzed in detail.


Science And Engineering Of Nanoparticle-Polymer Composites: Insights From Computer Simulation, Francis W. Starr, Sharon C. Glotzer Dec 2003

Science And Engineering Of Nanoparticle-Polymer Composites: Insights From Computer Simulation, Francis W. Starr, Sharon C. Glotzer

Francis Starr

No abstract provided.


Ultrafine Nife2o4 Powder Fabricated From Reverse Microemulsion Process, Jiye Fang, Narayan Shama, Le Duc Tung, Eun Young Shin, Charles J. O'Connor, Kevin L. Stokes, Gabriel Caruntu, John B. Wiley, Leonard Spinu, Jinke Tang Jan 2003

Ultrafine Nife2o4 Powder Fabricated From Reverse Microemulsion Process, Jiye Fang, Narayan Shama, Le Duc Tung, Eun Young Shin, Charles J. O'Connor, Kevin L. Stokes, Gabriel Caruntu, John B. Wiley, Leonard Spinu, Jinke Tang

Physics Faculty Publications

NiFe2O4 ultrafine powder with high crystallinity has been prepared through a reverse microemulsion route. The composition in starting solution was optimized, and the resulting NiFe2O4 was formed at temperature of around 550–600 °C, which is much lower than that observed from the solid-state reaction. Magnetic investigation indicates that samples are soft-magnetic materials with low coercivity and with the saturation magnetization close to the bulk value of Ni ferrite.


Self-Assembly Of Fept Nanoparticles Into Nanorings, Weilie L. Zhou, Jibao He, Jiye Fang, Tuyet-Anh Huynh, Trevor J. Kennedy, Kevin L. Stokes, Charles J. O'Connor Jan 2003

Self-Assembly Of Fept Nanoparticles Into Nanorings, Weilie L. Zhou, Jibao He, Jiye Fang, Tuyet-Anh Huynh, Trevor J. Kennedy, Kevin L. Stokes, Charles J. O'Connor

Physics Faculty Publications

The application of nanoparticles as quantum dots in nanoelectronics demands their arrangement in ordered arrays. Shape controlled self-assembly is a challenge due to the difficulties of obtaining proper self-assembling parameters, such as solvent concentration, organic ligands, and nanoparticle size. In this article, hard magnetic FePt nanoparticles were synthesized using a combination approach of reduction and thermal decomposition. The nanoparticles are about 4.5 nm and appeared as truncated octahedral enclosed by the

{100} and {111}

crystal facets of fcc structure. The nanoparticles are of hexagonal close packing and orient randomly in the self-assembly nanoarrays. By diluting the solution for large-area self-assembly, …


Synthesis And Magnetic Properties Of Copt–Poly(Methylmethacrylate) Nanostructured Composite Material, Jiye Fang, Kevin L. Stokes, Jibao He, Weillie L. Zhou, Charles J. O'Connor, Daniela Caruntu Jan 2002

Synthesis And Magnetic Properties Of Copt–Poly(Methylmethacrylate) Nanostructured Composite Material, Jiye Fang, Kevin L. Stokes, Jibao He, Weillie L. Zhou, Charles J. O'Connor, Daniela Caruntu

Physics Faculty Publications

We have prepared nanometer-sized CoPt particles dispersed in a poly~methyl methacrylate~PMMA!matrix, as a novel nanostructured magnetic plastic, through a soft chemical processing route. In this work, CoPt nanoparticles were successfully synthesized from a solution phase reduction system in the presence of capping ligands and stabilizing agents at high temperature. The CoPt nanoparticles were annealed at 400 °C for 3 h, and were subsequently re-dispersed inmethylmethacrylate~monomer! . The polymerization was induced by a UV source and the hardness of final product was adjusted by varying the amount of monomeric cross-link agent. Annealed bare CoPt nanoparticles as a ‘‘core’’ material and CoPt–PMMA …


121.6 Nm Radiation Source For Advanced Lithography, Jianxun Yan, Ashraf El-Dakrouri, Mounir Laroussi, Mool C. Gupta Jan 2002

121.6 Nm Radiation Source For Advanced Lithography, Jianxun Yan, Ashraf El-Dakrouri, Mounir Laroussi, Mool C. Gupta

Electrical & Computer Engineering Faculty Publications

A vacuum ultraviolet (VUV) light source based on a high-pressure cylindrical dielectric barrier discharge (DBD) has been developed. Intense and spectrally clean Lyman-α line at 121.6 nm was obtained by operating a DBD discharge in neon with a small admixture of hydrogen. The spectrum, optical power, stability, and efficiency of the source were measured. The influence of the gas mixture and total gas pressure on the VUV intensity has been investigated. Maximum optical power of 3.2 W and spectral width 0.03 nm was achieved. Power stability of 2% for 100 h of operation has also been obtained. The newly developed …


Bistable Operation Of A Two-Section 1.3-Mm Inas Quantum Dot Laser—Absorption Saturation And The Quantum Confined Stark Effect, Xiaodong Huang, A. Stintz, Hua Li, Audra Rice, G. T. Liu, L.F. Lester, Julian Cheng, K.J. Malloy Mar 2001

Bistable Operation Of A Two-Section 1.3-Mm Inas Quantum Dot Laser—Absorption Saturation And The Quantum Confined Stark Effect, Xiaodong Huang, A. Stintz, Hua Li, Audra Rice, G. T. Liu, L.F. Lester, Julian Cheng, K.J. Malloy

Faculty Publications

Room temperature, continuous-wave bistability was observed in oxide-confined, two-section, 1.3- m quantum-dot (QD) lasers with an integrated intracavity quantum-dot saturable absorber. The origin of the hysteresis and bistability were shown to be due to the nonlinear saturation of the QD absorption and the electroabsorption induced by the quantum confined Stark effect.


Modeling The High-Speed Switching Of Far-Infrared Radiation By Photoionization In A Semiconductor, Thomas E. Wilson May 1999

Modeling The High-Speed Switching Of Far-Infrared Radiation By Photoionization In A Semiconductor, Thomas E. Wilson

Physics Faculty Research

Data from an earlier study [T. Vogel et al., Appl. Opt. 31, 329 (1992)] on the subnanosecond switching of 119-μm radiation in high-resistivity silicon by pulsed UV laser radiation, is compared with a refined one-dimensional numerical multilayer model accounting for the generation, recombination, and diffusion of the free carriers on the resulting far-infrared optical properties of the silicon. The inclusion of recent measurements for carrier-density and temperature-dependent transport parameters leads to improved agreement between experiment and theory.


Characterization Of Piezoceramic Crosses With Large Range Scanning Capability And Applications For Low Temperature Scanning Tunneling Microscopy, J. A. Helfrich, Shireen Adenwalla, J. B. Ketterson, G. A. Zhitomirsky Jan 1995

Characterization Of Piezoceramic Crosses With Large Range Scanning Capability And Applications For Low Temperature Scanning Tunneling Microscopy, J. A. Helfrich, Shireen Adenwalla, J. B. Ketterson, G. A. Zhitomirsky

Shireen Adenwalla Papers

We have developed a large amplitude piezoceramic scanner which should have numerous applications. Scanning tunneling microscopy (STM) and other scanning probe microscopies predominantly use piezoceramics for the scanning elements. Similarly adaptive optics, high resolution lithography, and micromanipulators are other examples of research which regularly utilize piezoceramic scanners. We present a new geometry for a piezoceramic scanner which allows for both high resolution (~nanometers) and large amplitude (~400 µm) displacements. The cross-shaped geometry makes it possible to produce extremely long pieces with very high tolerances. We have shown its effectiveness by using it as the major component of a low temperature …