Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physics

Nanostructural Origin Of Semiconductivity And Large Magnetoresistance In Epitaxial Nico2O4/Al2O3 Thin Films, Congmian Zhen, Xiaozhe Zhang, Wengang Wei, Wenzhe Guo, Ankit Pant, Xiaoshan Xu, Jian Shen, Li Ma, Denglu Hou Mar 2018

Nanostructural Origin Of Semiconductivity And Large Magnetoresistance In Epitaxial Nico2O4/Al2O3 Thin Films, Congmian Zhen, Xiaozhe Zhang, Wengang Wei, Wenzhe Guo, Ankit Pant, Xiaoshan Xu, Jian Shen, Li Ma, Denglu Hou

Xiaoshan Xu Papers

Despite low resistivity (~1 mΩ cm), metallic electrical transport has not been commonly observed in inverse spinel NiCo2O4, except in certain epitaxial thin films. Previous studies have stressed the effect of valence mixing and the degree of spinel inversion on the electrical conduction of NiCo2O4 films. In this work, we studied the effect of nanostructural disorder by comparing the NiCo2O4 epitaxial films grown on MgAl2O4 (1 1 1) and on Al2O3 (0 0 1) substrates. Although the optimal growth conditions are similar for the NiCo ...


Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock Dec 2017

Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock

Theses, Dissertations, and Student Research from Electrical & Computer Engineering

In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with ...


Elastic Properties Of Superconductors And Materials With Weakly Correlated Spins, Christian Binek Jul 2017

Elastic Properties Of Superconductors And Materials With Weakly Correlated Spins, Christian Binek

Christian Binek Publications

It is shown that in the ergodic regime, the temperature dependence of Young’s modulus is solely determined by the magnetic properties of a material. For the large class of materials with paramagnetic or diamagnetic response, simple functional forms of the temperature derivative of Young’s modulus are derived and compared with experimental data and empirical results. Superconducting materials in the Meissner phase are ideal diamagnets. As such, they display remarkable elastic properties. Constant diamagnetic susceptibility gives rise to a temperature independent elastic modulus for ceramic and single crystalline superconductors alike. The thermodynamic approach established in this report, paves the ...


Fabrication And Study Of The Structure And Magnetism Of Rare-Earth Free Nanoclusters, Bhaskar Das Apr 2017

Fabrication And Study Of The Structure And Magnetism Of Rare-Earth Free Nanoclusters, Bhaskar Das

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

No abstract provided.


Formation Of Mound-Like Multiscale Surface Structures On Titanium By Femtosecond Laser Processing, Edwin Peng, Alfred Tsubaki, Craig A. Zuhlke, Ryan Bell, Meiyu Wang, Dennis R. Alexander, George Gogos, Jeffrey E. Shield Mar 2017

Formation Of Mound-Like Multiscale Surface Structures On Titanium By Femtosecond Laser Processing, Edwin Peng, Alfred Tsubaki, Craig A. Zuhlke, Ryan Bell, Meiyu Wang, Dennis R. Alexander, George Gogos, Jeffrey E. Shield

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

Surface Functionalization Technique • Femtosecond Laser Surface Processing (FLSP) • Utilize high power, femtosecond (10-15 s) laser pulses • Produce self-organized, multiscale surface micro/nanostructures • Diverse range of applicable substrates: semiconductors, metals, polymers, & composites

Why? • What are the different types of FLSP structures on Ti? • Physical evidence needed for FLSP formation models • Optimize FLSP of Ti for biomedical & other applications

How? • Obtain evidence of mound growth processes by examining underlying microstructure • Utilize dual beam Scanning Electron Microscope-Focused Ion Beam instrument to cross section surface structures & fabricate transmission electron microscopy samples


The Metal/Organic Interface In Cobalt/Vinylidene Fluoride Heterostructures, Keith Foreman, E Echeverria, Mark A. Koten, R. M. Lindsay, N. Hong, Jeffrey E. Shield, Shireen Adenwalla Jan 2016

The Metal/Organic Interface In Cobalt/Vinylidene Fluoride Heterostructures, Keith Foreman, E Echeverria, Mark A. Koten, R. M. Lindsay, N. Hong, Jeffrey E. Shield, Shireen Adenwalla

Shireen Adenwalla Papers

Organic-based electronic devices are rapidly increasing in popularity, making it essential to understand and characterize the interface between organic materials and metallic electrodes. This work reports on the characterization of the interface between thin films of an emerging organic ferroelectric, vinylidene fluoride (VDF) oligomer, and Co, an important high Curie temperature ferromagnet. Using a wide battery of experimental techniques, it is shown that VDF oligomer thin films as thin as 15 nm can halt, or prevent, Co oxidization in atmospheric conditions, a necessary condition for device applications. Selectivity of magnetic properties, such as remanent magnetization, is enabled by the clarification ...


Organic Ferroelectric Evaporator With Substrate Cooling And In Situ Transport Capabilities, Keith Foreman, C. Labedz, M. Shearer, Shireen Adenwalla Jan 2014

Organic Ferroelectric Evaporator With Substrate Cooling And In Situ Transport Capabilities, Keith Foreman, C. Labedz, M. Shearer, Shireen Adenwalla

Shireen Adenwalla Papers

We report on the design, operation, and performance of a thermal evaporation chamber capable of evaporating organic thin films. Organic thin films are employed in a diverse range of devices and can provide insight into fundamental physical phenomena. However, growing organic thin films is often challenging and requires very specific deposition parameters. The chamber presented here is capable of cooling sample substrates to temperatures below 130 K and allows for the detachment of the sample from the cooling stage and in situ transport. This permits the use of multiple deposition techniques in separate, but connected, deposition chambers without breaking vacuum ...


Near-Infrared Surface-Enhanced Fluorescence Using Silver Nanoparticles In Solution, Michael D. Furtaw Dec 2013

Near-Infrared Surface-Enhanced Fluorescence Using Silver Nanoparticles In Solution, Michael D. Furtaw

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

Fluorescence spectroscopy is a widely used detection technology in many research and clinical assays. Further improvement to assay sensitivity may enable earlier diagnosis of disease, novel biomarker discovery, and ultimately, improved outcomes of clinical care along with reduction in costs. Near-infrared, surface-enhanced fluorescence (NIR-SEF) is a promising approach to improve assay sensitivity via simultaneous increase in signal with a reduction in background. This dissertation describes research conducted with the overall goal to determine the extent to which fluorescence in solution may be enhanced by altering specific variables involved in the formation of plasmonactive nanostructures of dye-labeled protein and silver nanoparticles ...


Study Of The Growth And Switching Kinetics On Ferroelectric Nanocrystals Of Copolymer Vinylidene Fluoride And Trifluoroethylene On An Atomic Force Microscope, R. V. Gaynutdinov, O. A. Lysova, A. L. Tolstikhina, V. M. Fridkin, S. G. Yudin, Stephen Ducharme Mar 2013

Study Of The Growth And Switching Kinetics On Ferroelectric Nanocrystals Of Copolymer Vinylidene Fluoride And Trifluoroethylene On An Atomic Force Microscope, R. V. Gaynutdinov, O. A. Lysova, A. L. Tolstikhina, V. M. Fridkin, S. G. Yudin, Stephen Ducharme

Stephen Ducharme Publications

The growth of nanocrystals obtained from Langmuir-Blodgett films of ferroelectric copolymer consisting of 70% vinylidene fluoride and 30% trifluoroethylene has been investigated by atomic force microscopy (AFM). The radius and concentration of nanocrystals are found to depend on the annealing time of the film. A model for nanocrystal growth is proposed which yields adequate time dependences for nanocrystal size parameters. The switching kinetics of individual ferroelectric nanocrystals with an average diameter of 100–200 nm and a height of 15–20 nm has been investigated in the piezoelectric response mode. It is shown that the switching of nanocrystals has an ...


Scaling Of The Coercive Field In Ferroelectrics At The Nanoscale, R. V. Gaynutdinov, M. Minnekaev, S. Mitko, A. L. Tolstikhina, A. Zenkevich, Stephen Ducharme, Vladimir M. Fridkin Jan 2013

Scaling Of The Coercive Field In Ferroelectrics At The Nanoscale, R. V. Gaynutdinov, M. Minnekaev, S. Mitko, A. L. Tolstikhina, A. Zenkevich, Stephen Ducharme, Vladimir M. Fridkin

Stephen Ducharme Publications

The scaling of the coercive field in ferroelectric films at the nanoscale is investigated experimentally. The scaling in the films of copolymer vinylidene fluoride and BaTiO3 with thickness equal by the order of value to the critical domain nucleus size 1–10 nm reveals deviation from the well-known Kay–Dunn law. At this thickness region coercive field does not depend on thickness and coincides with Landau–Ginzburg–Devonshire value.


Ferroelectric Control Of Magnetocrystalline Anisotropy At Cobalt/Poly(Vinylidene Fluoride) Interfaces, Pavel Lukashev, Tula R. Paudel, Juan M. López-Encarnación, Shireen Adenwalla, Evgeny Y. Tsymbal, Julian P. Velev Jan 2012

Ferroelectric Control Of Magnetocrystalline Anisotropy At Cobalt/Poly(Vinylidene Fluoride) Interfaces, Pavel Lukashev, Tula R. Paudel, Juan M. López-Encarnación, Shireen Adenwalla, Evgeny Y. Tsymbal, Julian P. Velev

Shireen Adenwalla Papers

Electric field control of magnetization is one of the promising avenues for achieving high-density energy-efficient magnetic data storage. Ferroelectric materials can be especially useful for that purpose as a source of very large switchable electric fields when interfaced with a ferromagnet. Organic ferroelectrics, such as poly(vinylidene fluoride) (PVDF), have an additional advantage of being weakly bonded to the ferromagnet, thus minimizing undesirable effects such as interface chemical modification and/or strain coupling. In this work we use first-principles density functional calculations of Co/PVDF heterostructures to demonstrate the effect of ferroelectric polarization of PVDF on the interface magnetocrystalline anisotropy ...


Domain Size And Structure In Exchange Coupled [Co/Pt]/Nio/[Co/Pt] Multilayers, Andrew G. Baruth, Shireen Adenwalla Aug 2011

Domain Size And Structure In Exchange Coupled [Co/Pt]/Nio/[Co/Pt] Multilayers, Andrew G. Baruth, Shireen Adenwalla

Shireen Adenwalla Papers

We investigate the competing effects of interlayer exchange coupling and magnetostatic coupling in the magnetic heterostructure ([Co/Pt]/NiO/[Co/Pt]) with perpendicular magnetic anisotropy (PMA). This particular heterostructure is unique among coupled materials with PMA in directly exhibiting both ferromagnetic and antiferromagnetic coupling, oscillating between the two as a function of spacer layer thickness. By systematically tuning the coupling interactions via a wedge-shaped NiO spacer layer, we explore the energetics that dictate magnetic domain formation using high resolution magnetic force microscopy coupled with the magneto-optical Kerr effect. This technique probes the microscopic and macroscopic magnetic behavior as a continuous ...


Boron Carbide Based Solid State Neutron Detectors: The Effects Of Bias And Time Constant On Detection Efficiency, Nina Hong, John Mullins, Keith Foreman, Shireen Adenwalla Jun 2010

Boron Carbide Based Solid State Neutron Detectors: The Effects Of Bias And Time Constant On Detection Efficiency, Nina Hong, John Mullins, Keith Foreman, Shireen Adenwalla

Shireen Adenwalla Papers

Neutron detection in thick boron carbide(BC)/n-type Si heterojunction diodes shows a threefold increase in efficiency with applied bias and longer time constants. The improved efficiencies resulting from long time constants have been conclusively linked to the much longer charge collection times in the BC layer. Neutron detection signals from both the p-type BC layer and the n-type Si side of the heterojunction diode are observed, with comparable efficiencies. Collectively, these provide strong evidence that the semiconducting BC layer plays an active role in neutron detection, both in neutron capture and in charge generation and collection.


Boron-Rich Semiconducting Boron Carbide Neutron Detector, Andrew D. Harken, Ellen E. Day, Brian W. Robertson, Shireen Adenwalla Jan 2005

Boron-Rich Semiconducting Boron Carbide Neutron Detector, Andrew D. Harken, Ellen E. Day, Brian W. Robertson, Shireen Adenwalla

Shireen Adenwalla Papers

Data on the neutron detection capabilities of a variety of boron carbide/Si heterojunction diodes is presented. The pulse height spectra are compared with previously measured conversion layer devices and the variations in shape and position of the peaks are discussed.


Characterization Of Piezoceramic Crosses With Large Range Scanning Capability And Applications For Low Temperature Scanning Tunneling Microscopy, J. A. Helfrich, Shireen Adenwalla, J. B. Ketterson, G. A. Zhitomirsky Jan 1995

Characterization Of Piezoceramic Crosses With Large Range Scanning Capability And Applications For Low Temperature Scanning Tunneling Microscopy, J. A. Helfrich, Shireen Adenwalla, J. B. Ketterson, G. A. Zhitomirsky

Shireen Adenwalla Papers

We have developed a large amplitude piezoceramic scanner which should have numerous applications. Scanning tunneling microscopy (STM) and other scanning probe microscopies predominantly use piezoceramics for the scanning elements. Similarly adaptive optics, high resolution lithography, and micromanipulators are other examples of research which regularly utilize piezoceramic scanners. We present a new geometry for a piezoceramic scanner which allows for both high resolution (~nanometers) and large amplitude (~400 µm) displacements. The cross-shaped geometry makes it possible to produce extremely long pieces with very high tolerances. We have shown its effectiveness by using it as the major component of a low temperature ...