Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physics

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu May 2019

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu

Theses and Dissertations

Recently, various groups have demonstrated nano-scale engineering of nanostructures for optical to infrared wavelength plasmonic applications. Most fabrication technique processes, especially those using noble metals, requires an adhesion layer. Previously proposed theoretical work to support experimental measurement often neglect the effect of the adhesion layers. The first finding of this work focuses on the impact of the adhesion layer on nanoparticle plasmonic properties. Gold nanodisks with a titanium adhesion layer are investigated by calculating the scattering, absorption, and extinction cross-section with numerical simulations using a finite difference time domain (FDTD) method. I demonstrate that a gold nanodisk with an adhesive ...


Nano/Biosensors Based On Large-Area Graphene, Pedro Jose Ducos Jan 2017

Nano/Biosensors Based On Large-Area Graphene, Pedro Jose Ducos

Publicly Accessible Penn Dissertations

Two dimensional materials have properties that make them ideal for applications in chemical and biomolecular sensing. Their high surface/volume ratio implies that all atoms are exposed to the environment, in contrast to three dimensional materials with most atoms shielded from interactions inside the bulk. Graphene additionally has an extremely high carrier mobility, even at ambient temperature and pressure, which makes it ideal as a transduction device. The work presented in this thesis describes large-scale fabrication of Graphene Field Effect Transistors (GFETs), their physical and chemical characterization, and their application as biomolecular sensors. Initially, work was focused on developing an ...


Measuring Nonlinear Properties Of Graphene Thin Films Using Z-Scan Technique, Thekrayat Hassan Al Abdulaal Dec 2016

Measuring Nonlinear Properties Of Graphene Thin Films Using Z-Scan Technique, Thekrayat Hassan Al Abdulaal

Theses and Dissertations

The nonlinear studies of two-dimensional (2D) nanomaterials, specifically graphene, are very significant since graphene is finding its usefulness in handling the enormous heat in nanoscale high-density power electronics. Graphene has emerged to be a promising nanomaterial as an excellent heat spreader due to its high thermal conductivity. However, the experimental nonlinear study of graphene materials and their application in developing future optoelectronic devices demands for more developed research.

The research objective is first to build a precise, and sensitive technique to investigate and understand the thermal nonlinear properties, including nonlinear refractive index (n2), nonlinear absorption coefficient (β), and thermo-optic coefficient ...


Preparation And Characterization Of Van Der Waals Heterostructures, Horacio Coy Diaz Jun 2016

Preparation And Characterization Of Van Der Waals Heterostructures, Horacio Coy Diaz

Graduate Theses and Dissertations

In this dissertation different van der Waals heterostructures such as graphene-MoS2 and MoTe2-MoS2 were prepared and characterized. In the first heterostructure, polycrystalline graphene was synthesized by chemical vapor deposition and transferred on top of MoS2 single crystal. In the second heterostructure, MoTe2 monolayers were deposited on MoS2 by molecular beam epitaxy.

Characterization of graphene-MoS2 heterostructures was conducted by spin and angle resolve spectroscopy which showed that the electronic structure of the bulk MoS2 and graphene in this van der Waals heterostructures is modified. For MoS2 underneath the graphene, a band ...


Nano-Bio Hybrid Electronic Sensors For Chemical Detection And Disease Diagnostics, Nicholas John Kybert Jan 2015

Nano-Bio Hybrid Electronic Sensors For Chemical Detection And Disease Diagnostics, Nicholas John Kybert

Publicly Accessible Penn Dissertations

The need to detect low concentrations of chemical or biological targets is ubiquitous in environmental monitoring and biomedical applications. The goal of this work was to address challenges in this arena by combining nanomaterials grown via scalable techniques with chemical receptors optimized for the detection problem at hand. Advances were made in the CVD growth of graphene, carbon nanotubes and molybdenum disulfide. Field effect transistors using these materials as the channel were fabricated using methods designed to avoid contamination of the nanomaterial surfaces. These devices were used to read out electronic signatures of binding events of molecular targets in both ...


Improving The Signal-To-Noise Of Nanopore Sensors, Matthew Puster Jan 2015

Improving The Signal-To-Noise Of Nanopore Sensors, Matthew Puster

Publicly Accessible Penn Dissertations

Over the last five years, solid state nanopore technology advanced to rival biological pores as a platform for next generation DNA sequencing. Fabrication improvements led to a reduction in nanopore diameter and membrane thickness, offering high precision sensing. Custom electronics were developed concomitant with low capacitance membranes for low-noise, high-bandwidth measurements. These advances improved our ability to detect small differences between translocating molecules and to measure short molecules translocating at high speeds.

This work focuses specifically on the challenge of maximizing the signal magnitude generated by the solid state nanopore. One way that this can be achieved is by thinning ...


Transport And Optical Properties Of Low-Dimensional Complex Systems, Andrii Iurov Oct 2014

Transport And Optical Properties Of Low-Dimensional Complex Systems, Andrii Iurov

All Dissertations, Theses, and Capstone Projects

Over the last five years of my research work, I, my research was mainly concerned with certain crucial tunneling, transport and optical properties of novel low-dimensional graphitic and carbon-based materials as well as topological insulators. Both single-electron and many-body problems were addressed. We investigated the Dirac electrons transmission through a potential barrier in the presence of circularly polarized light. An anomalous photon-assisted enhanced transmission is predicted and explained in a comparison with the well-known Klein paradox. It is demonstrated that the perfect transmission for nearly-head-on collision in an infinite graphene is suppressed in gapped dressed states of electrons, which is ...


Nanoscale Manipulation Of Pristine And Functionalized Freestanding Graphene Using Scanning Tunneling Microscopy, Matthew Ackerman Aug 2014

Nanoscale Manipulation Of Pristine And Functionalized Freestanding Graphene Using Scanning Tunneling Microscopy, Matthew Ackerman

Theses and Dissertations

Over the past ten years the 2D material graphene has attracted an enourmous amount of attention from researchers from across diciplines and all over the world. Many of its outstanding electronic properties are present only when it is not interacting with a substrate but is instead freestanding. In this work I demonstrate that pristine and functionalized freestanding graphene can be imaged using a scanning tunneling microscope (STM) and that imaging a flexible 2D surface is fundamentally different from imaging a bulk material due to the attraction between the STM tip and the sample. This attraction can be used to manipulate ...


Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen Oct 2013

Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the nanotechnology field, some existing materials and applications are harmful to the environment, not efficient for certain tasks, or too expensive to be fully utilized. Graphene is a strong and cheap material that can be used to improve current nanotechnologies for more practical uses in society. Twisted bilayer graphene (TBG) is an orientation of graphene layers that exhibit different properties than regular bilayer graphene. It is made by placing a single layer of graphene on top of another at an angle with respect to the other lattice orientation. Understanding the characteristics of TBG is important to uncover more physics ...


Transparent Actuator Made With Few Layer Graphene Electrode And Dielectric Elastomer, For Variable Focus Lens, Taeseon Hwang, Hyeok-Yong Kwon, Joon-Suk Oh, Jung-Pyo Hong, Seung-Chul Hong, Youngkwan Lee, Hyouk Ryeo Choi, Kwang J. Kim, Mainul Hossain Bhuiya, Jae Do Nam Jan 2013

Transparent Actuator Made With Few Layer Graphene Electrode And Dielectric Elastomer, For Variable Focus Lens, Taeseon Hwang, Hyeok-Yong Kwon, Joon-Suk Oh, Jung-Pyo Hong, Seung-Chul Hong, Youngkwan Lee, Hyouk Ryeo Choi, Kwang J. Kim, Mainul Hossain Bhuiya, Jae Do Nam

Mechanical Engineering Faculty Publications

A transparent dielectric elastomer actuator driven by few-layer-graphene (FLG) electrode was experimentally investigated. The electrodes were made of graphene, which was dispersed inN-methyl-pyrrolidone. The transparent actuator was fabricated from developed FLG electrodes.The FLG electrode with its sheet resistance of 0.45 kΩ/sq (80 nm thick) was implemented to mask silicone elastomer. The developed FLG-driven actuator exhibited an optical transparency of over 57% at a wavenumber of 600 nm and produced bending displacement performance ranging from 29 to 946 μm as functions of frequency and voltage. The focus variation was clearly demonstrated under actuation to study ...


Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock May 2012

Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock

Theses and Dissertations

Graphene, what some are terming the "new silicon", has the possibility of revolutionizing technology through nanoscale design processes. Fabrication of graphene for device processing is limited largely by the temperatures used in conventional deposition. High temperatures are detrimental to device design where many different materials may be present. For this reason, graphene synthesis at low temperatures using plasma-enhanced chemical vapor deposition is the subject of much research. In this thesis, a tool for ultra-high vacuum plasma-enhanced chemical vapor deposition (UHV-PECVD) and accompanying subsystems, such as control systems and alarms, are designed and implemented to be used in future graphene growths ...