Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Progress On: “Coherent Terahertz Acoustic Phonon Scattering: Novel Diagnostic For Erosion In Plasma Thruster Discharge Chamber Walls", Thomas E. Wilson, Iain D. Boyd Sep 2012

Progress On: “Coherent Terahertz Acoustic Phonon Scattering: Novel Diagnostic For Erosion In Plasma Thruster Discharge Chamber Walls", Thomas E. Wilson, Iain D. Boyd

Physics Faculty Research

The study is based on the success in obtaining the first experimental evidence for the direct excitation of coherent nanosecond-pulsed high-frequency acoustic phonons in semiconducting doping superstructures by electromagnetic fields of the same frequency. Acoustic phonons are detected by a superconducting bolometer, with nanosecond resolution, at the appropriate time-of-flight across a (100) silicon substrate for ballistic longitudinal phonons when a silicon delta-doped doping superlattice is illuminated with grating-coupled nanosecond-pulsed 246-GHz laser radiation with an approximate power density of 1 kW/mm2. The absorbed phonon power density in the bolometer detector is estimated to be 10 μW/mm2, in ...


Superlattice Ultrasonic Generation, Thomas E. Wilson, M. Oehme, E. Kasper, H-J. L. Gossmann Mar 2011

Superlattice Ultrasonic Generation, Thomas E. Wilson, M. Oehme, E. Kasper, H-J. L. Gossmann

Physics Faculty Research

We report the first experimental evidence for the resonant excitation of coherent high-frequency acoustic phonons in semiconducting doping superstructures by far-infrared laser radiation. After a grating-coupled delta-doped silicon doping superlattice is illuminated with ~1 kW/mm2 nanosecond-pulsed 246 GHz laser radiation, a delayed nanosecond pulse is detected by a superconducting bolometer at a time corresponding to the appropriate time-of-flight for ballistic longitudinal acoustic phonons across the (100) silicon substrate. The absorbed phonon power density in the microbolometer is observed to be ~10 μW/mm2, in agreement with theory. The phonon pulse duration also matches the laser pulse duration ...


Fabrication Of Robust Superconducting Granular Aluminium/Palladium Bilayer Microbolometers With Sub-Nanosecond Response, Thomas E. Wilson Dec 2007

Fabrication Of Robust Superconducting Granular Aluminium/Palladium Bilayer Microbolometers With Sub-Nanosecond Response, Thomas E. Wilson

Physics Faculty Research

We provide a convenient recipe for fabricating reliable superconducting microbolometers as acoustic phonon detectors with sub-nanosecond response, using imagereversal optical lithography and dc-magnetron sputtering, and our recipe requires no chemical or plasma etching. Our approach solves the traditional problem for granular aluminium bolometers of unreliable (i.e., non-Ohmic) electrical contacts by sequentially sputtering the granular aluminium film and then a palladium capping layer. We use dc calibration data, the method of Danilchenko et al. [1], and direct nanosecond-pulsed photoexcitation to obtain the microbolometer’s characteristic current, thermal conductance, characteristic relaxation time, and heat capacity. We also demonstrate the use of ...


Accessibility Of Home Blood Pressure Monitors For Blind And Visually Impaired People, Mark M. Uslan, Darren M. Burton, Thomas E. Wilson, Steven Taylor, Bruce S. Chertow, Jack E. Terry Mar 2007

Accessibility Of Home Blood Pressure Monitors For Blind And Visually Impaired People, Mark M. Uslan, Darren M. Burton, Thomas E. Wilson, Steven Taylor, Bruce S. Chertow, Jack E. Terry

Physics Faculty Research

Background: The prevalence of hypertension comorbid with diabetes is a significant health care issue. Use of the home blood pressure monitor (HBPM) for aiding in the control of hypertension is noteworthy because of benefits that accrue from following a home measurement regimen. To be usable by blind and visually impaired patients, HBPMs must have speech output to convey all screen information, an easily readable visual display, identifiable controls that are easy to use, and an accessible user manual.

Methods: Data on the physical aspects and the features and functions of nine Food and Drug Administration-approved HBPMs (eight of which were ...


Progress Towards Terahertz Acoustic Phonon Generation In Doping Superlattices, Thomas E. Wilson Oct 2005

Progress Towards Terahertz Acoustic Phonon Generation In Doping Superlattices, Thomas E. Wilson

Physics Faculty Research

Progress is described in experiments to generate coherent terahertz acoustic phonons in silicon doping superlattices by the resonant absorption of nanosecond-pulsed far-infrared laser radiation. Future experiments are proposed that would use the superlattice as a transducer in a terahertz cryogenic acoustic reflection microscope with sub-nanometer resolution.


Modeling The High-Speed Switching Of Far-Infrared Radiation By Photoionization In A Semiconductor, Thomas E. Wilson May 1999

Modeling The High-Speed Switching Of Far-Infrared Radiation By Photoionization In A Semiconductor, Thomas E. Wilson

Physics Faculty Research

Data from an earlier study [T. Vogel et al., Appl. Opt. 31, 329 (1992)] on the subnanosecond switching of 119-μm radiation in high-resistivity silicon by pulsed UV laser radiation, is compared with a refined one-dimensional numerical multilayer model accounting for the generation, recombination, and diffusion of the free carriers on the resulting far-infrared optical properties of the silicon. The inclusion of recent measurements for carrier-density and temperature-dependent transport parameters leads to improved agreement between experiment and theory.