Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Chemical Engineering

Institution
Keyword
Publication Year
Publication

Articles 31 - 60 of 183

Full-Text Articles in Mechanical Engineering

Nonmetallic Jet Impingement Thermal Management For Power Electronics Via Additive Manufacturing, Reece Whitt Dec 2021

Nonmetallic Jet Impingement Thermal Management For Power Electronics Via Additive Manufacturing, Reece Whitt

Graduate Theses and Dissertations

The increase in energy demanded by transportation and energy sectors has necessitated highly efficient thermal management for reliable power electronics operations. Conventional cooling techniques are limited by their inability to target switching location hot spot temperatures, leading to non-uniform thermal gradients. These devices, such as cold plates and heat sinks, also utilize heavy metallic structures that can accentuate electromagnetic interferences generated by high voltage switching processes. This work proposes a non-metallic jet impingement cooler for more customized thermal management, while simultaneously reducing the harmful effects of electromagnetic interferences. Additive manufacturing is utilized to enable jet impingement zones to target individual …


Advanced Materials Design Using Application-Based Processing Techniques, Daniel S. Camarda Oct 2021

Advanced Materials Design Using Application-Based Processing Techniques, Daniel S. Camarda

Doctoral Dissertations

This dissertation pertains to generating advanced materials using application-based processing techniques. First, billets consisting of PTFE sintering powders are evaluated using Thermomechancal Analysis. It was found that both shape change and volume change are associated with enthalpic and entropic recoil, respectively. These phenomena, due to melting and stored energy during the powder compaction process, were found to be molecular weight dependent. Additionally, kinetics of the recovery and sintering process were found to be slower in blended specimens than pure samples. Next, the creation of graft copolymers by selectively grafting a second polymer to the amorphous fraction of a semi-crystalline polymer …


Non-Circular Hydraulic Jumps Due To Inclined Jets, Ahmed Mohamed Abdelaziz Oct 2021

Non-Circular Hydraulic Jumps Due To Inclined Jets, Ahmed Mohamed Abdelaziz

Electronic Thesis and Dissertation Repository

When a laminar inclined circular jet impinges on a horizontal surface, it forms a non-circular hydraulic jump governed by a non-axisymmetric flow. In this thesis, we use the boundary-layer and thin-film approaches in the three dimensions to theoretically analyse such flow and the hydraulic jumps produced in such cases. We particularly explore the interplay among inertia, gravity, and the effective inclination angle on the non-axisymmetric flow.

The boundary-layer height is found to show an azimuthal dependence at strong gravity level only; however, the thin film thickness as well as the hydraulic jump profile showed a strong non-axisymmetric behaviour at all …


Optimization Of Chemical Compositions Of Al-Si-Cu-Ni-Sr Alloys With High Strengths And Electrical Conductivities, Yuxian Li Oct 2021

Optimization Of Chemical Compositions Of Al-Si-Cu-Ni-Sr Alloys With High Strengths And Electrical Conductivities, Yuxian Li

Electronic Theses and Dissertations

Mechanical strengths and electrical conductivity are the very important engineering properties of lightweight metallic materials used in the automotive industry, especially for battery-powered electric vehicles (BEV). However, the main issue is that high strength and high electrical conductivity are mutually exclusive due to physical nature of these properties. The aim of this study is to develop new cast aluminum alloys for the production of rotor bar in the rotor with high as-cast strength and electrical conductivity. A design of experiment (DOE) technique, Taguchi method, was used to develop high as-cast strength and electrical conductivity alloys with various element addition of …


3d Printing Technology Applied In Lithium Metal Batteries: From Liquid To Solid., Xuejie Gao Aug 2021

3d Printing Technology Applied In Lithium Metal Batteries: From Liquid To Solid., Xuejie Gao

Electronic Thesis and Dissertation Repository

Li-metal batteries are strongly considered to be one of the most promising candidates for high energy density energy storage devices in our modern society. However, the state-of-the-art Limetal batteries are still limited by several challenges including 1) low energy/power density; 2) Li dendrite growth; 3) low coulombic efficiency, and 4) safety concerns within the liquid electrolyte. This thesis mainly focuses on addressing these challenges by using a 3D printing technique to realize high energy/power density Li-metal batteries.

A self-standing high areal energy density cathode for Li-S battery was developed by the 3D printing method in the first part. The optimized …


Experimental And Computational Study Of Determining Mass Transport Parameters In Vanadium Redox Flow Batteries, Tugrul Y. Ertugrul Aug 2021

Experimental And Computational Study Of Determining Mass Transport Parameters In Vanadium Redox Flow Batteries, Tugrul Y. Ertugrul

Doctoral Dissertations

Vanadium redox flow batteries are a promising large-scale energy storage technology, but a number of challenges must be overcome for commercial implementation. At the cell level, mass transport contributes significantly to performance losses, limiting VRFB performance. Therefore, understanding mass transport mechanisms in the electrode is a critical step to mitigating such losses and optimizing VRFBs.

In this study, mass transport mechanisms (e.g. convection, diffusion) are investigated in a VRFB test bed using a strip cell architecture, having 1 cm2 active area. It is found that diffusion-dominated cells have large current gradients; convection-dominated cells have relatively uniform current distribution from …


Theoretical And Computational Modeling Of Contaminant Removal In Porous Water Filters, Aman Raizada Aug 2021

Theoretical And Computational Modeling Of Contaminant Removal In Porous Water Filters, Aman Raizada

Theses and Dissertations

Contaminant transport in porous media is a well-researched problem across many scientific and engineering disciplines, including soil sciences, groundwater hydrology, chemical engineering, and environmental engineering. In this thesis, we attempt to tackle this multiscale transport problem using the upscaling approach, which leads to the development of macroscale models while considering a porous medium as an averaged continuum system.

First, we describe a volume averaging-based method for estimating flow permeability in porous media. This numerical method overcomes several challenges faced during the application of traditional permeability estimation techniques, and is able to accurately provide the complete permeability tensor of a porous …


Phase-Field Modeling Of The Polymer Membrane Formation Process For Micro- And Ultra-Filtration, Michael Rosario Cervellere Jul 2021

Phase-Field Modeling Of The Polymer Membrane Formation Process For Micro- And Ultra-Filtration, Michael Rosario Cervellere

Graduate Theses and Dissertations

Porous polymer membrane filters are widely used in separation and filtration process. Micro- and ultra-filtration membranes are commonly used in biopharmaceutical applications such as filtering viruses and separating proteins from a carrier solution. The formation of these membrane filters via phase inversion is a complex and interconnected process where varying casting conditions can have a wide variety of effects on the final membrane morphol- ogy. Tailoring membrane filters for specific performance characteristics is a tedious and time consuming process. The time and length scales of membrane formation make it extremely difficult to experimentally observe membrane formation. Modeling the membrane formation …


Economic Feasibility Of A Methanol To Dimethyl Ether Production Process To Avoid Contract Failure Shortfalls From The Covid-19 Pandemic, Jacob Noll, Robert Wasson, Harrison Mckinnis May 2021

Economic Feasibility Of A Methanol To Dimethyl Ether Production Process To Avoid Contract Failure Shortfalls From The Covid-19 Pandemic, Jacob Noll, Robert Wasson, Harrison Mckinnis

Honors Theses

Our team entered the 2021 AVEVA Academic Competition, where teams of undergraduate senior chemical engineering students competed across the country. The competition was composed of two parts: the base case design and the optimization of a chemical process. As part of the competition, our team is acting as the Engineering team for a fictional company that has given us this project. Due to COVID-19, our methanol producing company has lost a contract with a customer, leaving 23,000 tonnes/yr of unclaimed methanol. We have two choices with this methanol: either sell the methanol on the market at the spot price for …


Analysis Of Fluid Flow In Redox Flow Batteries, Erfan Asadipour May 2021

Analysis Of Fluid Flow In Redox Flow Batteries, Erfan Asadipour

McKelvey School of Engineering Theses & Dissertations

Redox flow batteries (RFB) hold great potential for large-scale stationary energy storage. However, their low energy density compared to other energy storage systems must improve for feasibility. Electrolyte flow distribution affects current density distribution and providing a uniform current density distribution is one way to improve RFB performance. Additionally, reducing the power consumption of the electrolytes’ pump as a source of energy loss in RFB systems increases their efficiency. Investigating both subjects requires analysis of the fluid dynamics in RFB cells.

In this thesis, a novel, computationally cost-effective hydraulic-electrical analogous model (HEAM) was developed to study fluid dynamics by implementing …


Economic Feasibility Of Mixed Plastic Waste Pyrolysis Using Twin Reactor System In Northwest Arkansas, Carol Rogers, Patricia Means, Renato Gonzalez, Kaida Sheets, Hayden Townsend May 2021

Economic Feasibility Of Mixed Plastic Waste Pyrolysis Using Twin Reactor System In Northwest Arkansas, Carol Rogers, Patricia Means, Renato Gonzalez, Kaida Sheets, Hayden Townsend

Chemical Engineering Undergraduate Honors Theses

Plastic waste generation is increasing at an unsustainable rate while recycling solutions remain stagnant. As a chemical means of recycling, mixed plastic waste pyrolysis can generate synthetic oil appropriate for use as fuel in power generation from plastic waste that otherwise accumulates in landfills. With the scaling of a commercial plastic pyrolysis process in Northwest Arkansas (NWA) modeled after an operational sawdust pyrolysis unit in Huntsville, Arkansas, economic analysis resulted in 26.3% internal rate of return. Therefore, construction of a commercial mixed plastic-to-fuel pyrolysis plant is economically justified and should be pursued. To effectively implement the proposed design, NWA must …


Image Analysis Of Charged Bimodal Colloidal Systems In Microgravity., Adam J. Cecil May 2021

Image Analysis Of Charged Bimodal Colloidal Systems In Microgravity., Adam J. Cecil

Electronic Theses and Dissertations

Colloids are suspensions of two or more phases and have been topics of research for advanced, tunable materials for decades. Stabilization of colloids is typically attributed to thermodynamic mechanisms; however, recent studies have identified transport or entropic mechanisms that can potentially stabilize a thermodynamically unstable colloidal system. In this study, suspensions of silsesquioxane microparticles and zirconia nanoparticles were dispersed in a nitric acid solution and allowed to aggregate for 8-12 days in microgravity aboard the International Space Station. The suspensions were subsequently imaged periodically at 2.5x magnification. Due to the inadequacy of existing image analysis programs, the python package “Colloidspy” …


Relationship Between Thermal Conductivity And Free Electrons In Metal, Yansong Liu Apr 2021

Relationship Between Thermal Conductivity And Free Electrons In Metal, Yansong Liu

Senior Theses

An experiment was designed and conducted to explore the relationship between thermal conductivity with free electrons in metal. In the experiment, copper, iron, aluminum, and titanium rods with close diameters were used to carry out the experiment. Each rod was heated up by a heat unit at one end while cooled on the other end with a heat sink to maintain a steady state. DC current was applied to rods in the direction along, as well as against, the heat flow. Thermal conductivities were measured in these two situations for each rod. Results showed electrons do dominate thermal flow inside …


Dry Reforming Of Methane Using Microwave Irradiated Metal Oxide/Coal Char Catalysts, Anthony Carter Jan 2021

Dry Reforming Of Methane Using Microwave Irradiated Metal Oxide/Coal Char Catalysts, Anthony Carter

Graduate Theses, Dissertations, and Problem Reports

This research focuses on the synthesis of both shaped and amorphous powder materials, the combination of these materials with dried Powder River Basin (PRB) coal char, and their reactionary properties with methane and carbon dioxide gasses with conventional and microwave (MW) heating. The first goal of this project was to synthesize shaped micro and nano sized particles with ideal dielectric properties for converting electromagnetic energy into heat and proven capabilities of activating methane. These particles were synthesized via solvothermal, hydrothermal, and co-preceptory treatments alone and onto the surface of dried PRB coal char. PRB is a sub-bituminous, low-ranking coal (LRC) …


Thermal/Structural Analysis Of The Axion Quantum Metrology Cavity And Its Components, Tyler Funk Jan 2021

Thermal/Structural Analysis Of The Axion Quantum Metrology Cavity And Its Components, Tyler Funk

Graduate Research Theses & Dissertations

This research was centered around maximizing the capability to cool dielectric material within a containment unit, or Photonic Band Gap (PBG) cavity, designed for detecting axion dark matter and identifying the unit’s thermal properties. There are multiple types of PBG cavities, but the latest version that axion researchers wish to use has been theorized to contain possible issues related to its thermal properties. Thermal conductivity is an issue with the dielectric material because it is made from alumina which is highly insulative. This is important since the research is being done in a cryogenic environment and the thermal noise affects …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Detection Of Nucleotides In Hydrated Ssdna Via 2-D H-Bn Nanopore With Ionic-Liquid/Salt-Water Interface, Jungsoo Lee Dec 2020

Detection Of Nucleotides In Hydrated Ssdna Via 2-D H-Bn Nanopore With Ionic-Liquid/Salt-Water Interface, Jungsoo Lee

Multidisciplinary Studies Theses and Dissertations

Accomplishing slow translocation speed with high sensitivity has been the greatest mission for solid-state nanopore (SSN) to electrically detect nucleobases in single-stranded DNA (ssDNA). In this study, a method to detect nucleobases in ssDNA using a SSN is introduced by considerably slowing down the translocation speed and effectively increasing its sensitivity. The ultra-thin titanium dioxide (TiO2) coated hexagonal boron nitride (h-BN) nanopore was fabricated, along with an ionic-liquid [bmim][PF6]/2.0 M KCl aqueous (cis/trans) interfacial system, to increase both the spatial and the temporal resolutions. As the ssDNA molecules entered the nanopore, a …


Experimental Study Of Viscoelastic Fluid-Structure Interactions, Anita Anup Dey Dec 2020

Experimental Study Of Viscoelastic Fluid-Structure Interactions, Anita Anup Dey

Doctoral Dissertations

It is well known that when a flexible or flexibly-mounted structure is placed perpendicular to a Newtonian fluid flow, it can oscillate due to the shedding of vortices at high Reynolds numbers. Unlike Newtonian fluids, viscoelastic fluid flow can become unstable even at infinitesimal Reynolds numbers due to a purely elastic flow instability occurring at large Weissenberg numbers. This thesis focuses on exploring the mechanisms of viscoelastic fluid-structure interactions (VFSI) through experimental investigations on several different combinations of flexible and flexibly-mounted circular cylinders, micro and macro-scale cantilevered beams and viscoelastic fluids such as wormlike micelle solutions and polymer solutions. VFSI …


An Improved Foam Modeling Technique And Its Application To Petroleum Drilling And Production Practice, Yanfang Wang Dec 2020

An Improved Foam Modeling Technique And Its Application To Petroleum Drilling And Production Practice, Yanfang Wang

LSU Doctoral Dissertations

Foam is one of the most common used multiphase fluid in Underbalanced Drilling (UBD) and Managed Pressure Drilling (MPD). Because of its low density, high capacity of lifting and carrying cuttings, low cost and compatibility with formations, foam has become more superior than the conventional drilling mud when depleted reservoir pressure, severe lost circulation, or unstable borehole are encountered. In general, the success of foam applications rely on the understanding of the fundamentals of foam rheology in downhole conditions.

Foam rheology has been studied for decades. Conventional foam rheological models such as Power Law, Bingham Plastic, Herschel-Bulkley to explain foam …


Enhanced Kinetics And Modeling Of Pan-Based Carbon Felt Anodes In Vanadium Redox Flow Batteries, Michael Cyrus Daugherty Dec 2020

Enhanced Kinetics And Modeling Of Pan-Based Carbon Felt Anodes In Vanadium Redox Flow Batteries, Michael Cyrus Daugherty

Doctoral Dissertations

All-vanadium redox flow batteries (VRFBs) are a promising technology for grid-level energy storage, however, there are still several limitations in the forms of durability, efficiency, and overall costs, which are barriers to its commercial viability. With both bulk electrolyte flowing through its porous matrix and species flux at the solid-electrolyte interface, electrodes are the component of VRFB systems which host electrochemical reactions and facilitate contact between the liquid phase electrolyte and the electronically conductive solid phase. While the more limiting electrode in VRFB systems is dependent on the material, for polyacrylonitrile (PAN)-based carbon felts, the anode constitutes a larger portion …


The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins Dec 2020

The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins

Graduate Theses and Dissertations

This study investigates the induction heating response of uncapped iron oxide nanoparticles sonically dispersed as a nanofluid and mechanically distributed in solid phase change materials. The nanoparticles examined have a mean diameter of 14.42 nm and are magnetically heated in an alternating magnetic field at an amplitude of 72.6 kA/m at frequencies of 217, 303, and 397 kHz. Nanoparticle characterization was undertaken through transition electron microscopy, x-ray diffraction, and dynamic light scattering when in suspension. Carrier fluids were characterized through viscosity, heat capacity, and density measurements which were used in the calorimetric calculation of the specific absorption rate (SAR) of …


A Parametric Analysis Of A Turbofan Engine With An Auxiliary Bypass Combustion Chamber – The Turboaux Engine, Kaleab Fetahi Dec 2020

A Parametric Analysis Of A Turbofan Engine With An Auxiliary Bypass Combustion Chamber – The Turboaux Engine, Kaleab Fetahi

Mechanical & Aerospace Engineering Theses & Dissertations

A parametric study of a novel turbofan engine with an auxiliary combustion chamber, nicknamed the TurboAux engine is presented. The TurboAux engine is conceived as an extension of a low-bypass turbofan engine with an auxiliary bypass annular combustion chamber around the core stream. The study presented in this thesis is motivated by the need to facilitate clean secondary burning of fuel at temperatures higher than conventionally realized, from air exiting the low-pressure compressor. The parametric study starts by analyzing the turbojet engine and its performance with and without an afterburner segment attached. Following that, the conventional turbofan and its mixing …


Parametric Study Of Residual Stresses In Wire And Arc Additive Manufactured Parts, Hisham Khaled Jamil Abusalma Dec 2020

Parametric Study Of Residual Stresses In Wire And Arc Additive Manufactured Parts, Hisham Khaled Jamil Abusalma

Mechanical & Aerospace Engineering Theses & Dissertations

Wire and Arc Additive Manufacturing (WAAM) is a cost-effective additive manufacturing process due to its capability to fabricate large metal parts with high deposition rate and low equipment cost. Although this method is gaining popularity in manufacturing industry, more research is needed to understand process parameters’ effects on residual stress (RS) distribution and part distortion. As such, a 3D thermo-elastic-plastic transient model was established in ABAQUS and employed to investigate the effect of process parameters such as the torch speed, the deposition power and the interlayer dwell time on RS distribution and distortion in WAAM part. The numerical model utilized …


Modulating Mechanical Properties Of Polymer Composites Via Colloidal Particle Reinforcement, Yusheng Guo Oct 2020

Modulating Mechanical Properties Of Polymer Composites Via Colloidal Particle Reinforcement, Yusheng Guo

LSU Master's Theses

Additive manufacturing allows the rapid process of complex objects with excellent design flexibility. However, the products often exhibit poor mechanical properties when pure polymer is applied as printable material. In this work, we demonstrate that printability of polymer can be dramatically improved when particle filler is added to form reinforced polymer composites. Furthermore, the interaction between filler and polymer matrix leads to the enhancement in mechanical properties of the printed product. The material reinforcement induced by addition of fillers enables the wide application of polymer composites to print structures with unique features. In the printing of silica-reinforced pNIPAM composite, we …


Thermal Control Development Of A Proton Exchange Membrane Fuel Cell System, Ola Mohammed Taha Al-Shalash Aug 2020

Thermal Control Development Of A Proton Exchange Membrane Fuel Cell System, Ola Mohammed Taha Al-Shalash

Mechanical Engineering Theses

A fuel cell is an electrochemical energy conversion device that uses fuel to generate electricity. It basically converts the chemical energy of reactants directly into electricity without combustion. In a Proton Exchange Membrane Fuel Cell (PEMFC), the reactants, hydrogen and oxygen, are fed into the two electrodes, anode and cathode, respectively. A reaction takes place at each electrode and produces electricity, as well as water, and heat as the by-products. In order to maximize performance of a fuel cell, many factors can be considered for tuning and control. Temperature management is one of these factors.

A thermal-fluid model of a …


New Modeling Approaches For The Prediction Of Combustion Pollutants, Phillip R. Johnson Aug 2020

New Modeling Approaches For The Prediction Of Combustion Pollutants, Phillip R. Johnson

McKelvey School of Engineering Theses & Dissertations

Combustion processes are ubiquitous to human technological development and provide many benefits such as large-scale power generation for electricity and transportation along with residential and commercial heating for manufacturing, cooking, and warmth. However, these various processes can also have harmful effects on human health and the environment via emission of CO2 and other pollutants such as NOx and particulate matter (PM; often in the form of soot). For these reasons, there is a continued need for controlling, improving, and optimizing combustion processes. Modeling of these processes provides powerful insights into system-level dynamics and their control. Due to the size and …


Aqueous Redox Flow Batteries With Boron Doped Diamond As An Electrode., Alex M. Bates Aug 2020

Aqueous Redox Flow Batteries With Boron Doped Diamond As An Electrode., Alex M. Bates

Electronic Theses and Dissertations

As the interest and implementation of renewable energy accelerates, so does that of grid energy storage. It is widely believed that a cost-effective energy storage technology will bring about the proliferation of renewable energy. Redox flow battery (RFB) technology represents a promising solution to cost-effective grid energy storage. Compared to other technologies, RFBs have a long lifetime, high efficiency, are non-flammable, significantly reduce cost, and separately scale power and energy. The separation of power and energy enables increased energy capacity by simply adding electrolyte volume. Of the challenges facing RFB technology, one readily apparent is the cost of the active …


Numerical And Experimental Analysis Of Air-Cooled Condensers, Kaipo Kekaula May 2020

Numerical And Experimental Analysis Of Air-Cooled Condensers, Kaipo Kekaula

UNLV Theses, Dissertations, Professional Papers, and Capstones

The scope of this project is to numerically and experimentally dry cooling process in air-cooled condensers (ACCs) designed for concentrated solar power (CSP) applications. This effort is driven by the growing economic and political pressure to reduce water consumption during power generation due to limited water resources in the arid geographic climate of the southwestern United States. A computational approach is used in conjunction with experimental validation to gain a more complete understanding of these systems.

Traditionally research into ACCs have been largely limited to air-side heat transfer modelling as it accounts for a large portion of the total thermal …


The Desorption Kinetics Of Methane From Nonaqueous Fluids For Enhanced Well Control, James Lee Nielsen Jr. Jan 2020

The Desorption Kinetics Of Methane From Nonaqueous Fluids For Enhanced Well Control, James Lee Nielsen Jr.

LSU Master's Theses

The mass transfer of a dissolved gas evolving to return to the gaseous phase from a liquid is governed by many parameters. This process affects the development of an oil and gas well due to the possibility of gas contamination occurring from either an influx entering the wellbore, or drilling through gas-bearing formations. Once this dissolved hydrocarbon gas circulates up the wellbore, it will begin to evolve from solution and poses a potential risk to drilling equipment, the environment, and personnel at a drilling rig. Being able to predict the behavior of gas desorption based on a known set of …


Zips Precious Plastics: Plastic Extruder, Patrick Cole Jan 2020

Zips Precious Plastics: Plastic Extruder, Patrick Cole

Williams Honors College, Honors Research Projects

This project's goal was to design and build an affordable desktop filament extruder that can precisely and consistently extrude filament to a certain tolerance acceptable for 3D printers using wasted printing material. The group is partnering with an on campus organization focusing on engineering applications for sustainable futures. Zips Precious Plastics is a student run design group that intends to bring an innovation space on campus to help educate students about the importance of a closed looped system within plastic manufacturing.