Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Chemical Engineering

2020

Institution
Keyword
Publication

Articles 1 - 22 of 22

Full-Text Articles in Mechanical Engineering

Detection Of Nucleotides In Hydrated Ssdna Via 2-D H-Bn Nanopore With Ionic-Liquid/Salt-Water Interface, Jungsoo Lee Dec 2020

Detection Of Nucleotides In Hydrated Ssdna Via 2-D H-Bn Nanopore With Ionic-Liquid/Salt-Water Interface, Jungsoo Lee

Multidisciplinary Studies Theses and Dissertations

Accomplishing slow translocation speed with high sensitivity has been the greatest mission for solid-state nanopore (SSN) to electrically detect nucleobases in single-stranded DNA (ssDNA). In this study, a method to detect nucleobases in ssDNA using a SSN is introduced by considerably slowing down the translocation speed and effectively increasing its sensitivity. The ultra-thin titanium dioxide (TiO2) coated hexagonal boron nitride (h-BN) nanopore was fabricated, along with an ionic-liquid [bmim][PF6]/2.0 M KCl aqueous (cis/trans) interfacial system, to increase both the spatial and the temporal resolutions. As the ssDNA molecules entered the nanopore, a …


Experimental Study Of Viscoelastic Fluid-Structure Interactions, Anita Anup Dey Dec 2020

Experimental Study Of Viscoelastic Fluid-Structure Interactions, Anita Anup Dey

Doctoral Dissertations

It is well known that when a flexible or flexibly-mounted structure is placed perpendicular to a Newtonian fluid flow, it can oscillate due to the shedding of vortices at high Reynolds numbers. Unlike Newtonian fluids, viscoelastic fluid flow can become unstable even at infinitesimal Reynolds numbers due to a purely elastic flow instability occurring at large Weissenberg numbers. This thesis focuses on exploring the mechanisms of viscoelastic fluid-structure interactions (VFSI) through experimental investigations on several different combinations of flexible and flexibly-mounted circular cylinders, micro and macro-scale cantilevered beams and viscoelastic fluids such as wormlike micelle solutions and polymer solutions. VFSI …


An Improved Foam Modeling Technique And Its Application To Petroleum Drilling And Production Practice, Yanfang Wang Dec 2020

An Improved Foam Modeling Technique And Its Application To Petroleum Drilling And Production Practice, Yanfang Wang

LSU Doctoral Dissertations

Foam is one of the most common used multiphase fluid in Underbalanced Drilling (UBD) and Managed Pressure Drilling (MPD). Because of its low density, high capacity of lifting and carrying cuttings, low cost and compatibility with formations, foam has become more superior than the conventional drilling mud when depleted reservoir pressure, severe lost circulation, or unstable borehole are encountered. In general, the success of foam applications rely on the understanding of the fundamentals of foam rheology in downhole conditions.

Foam rheology has been studied for decades. Conventional foam rheological models such as Power Law, Bingham Plastic, Herschel-Bulkley to explain foam …


Enhanced Kinetics And Modeling Of Pan-Based Carbon Felt Anodes In Vanadium Redox Flow Batteries, Michael Cyrus Daugherty Dec 2020

Enhanced Kinetics And Modeling Of Pan-Based Carbon Felt Anodes In Vanadium Redox Flow Batteries, Michael Cyrus Daugherty

Doctoral Dissertations

All-vanadium redox flow batteries (VRFBs) are a promising technology for grid-level energy storage, however, there are still several limitations in the forms of durability, efficiency, and overall costs, which are barriers to its commercial viability. With both bulk electrolyte flowing through its porous matrix and species flux at the solid-electrolyte interface, electrodes are the component of VRFB systems which host electrochemical reactions and facilitate contact between the liquid phase electrolyte and the electronically conductive solid phase. While the more limiting electrode in VRFB systems is dependent on the material, for polyacrylonitrile (PAN)-based carbon felts, the anode constitutes a larger portion …


The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins Dec 2020

The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins

Graduate Theses and Dissertations

This study investigates the induction heating response of uncapped iron oxide nanoparticles sonically dispersed as a nanofluid and mechanically distributed in solid phase change materials. The nanoparticles examined have a mean diameter of 14.42 nm and are magnetically heated in an alternating magnetic field at an amplitude of 72.6 kA/m at frequencies of 217, 303, and 397 kHz. Nanoparticle characterization was undertaken through transition electron microscopy, x-ray diffraction, and dynamic light scattering when in suspension. Carrier fluids were characterized through viscosity, heat capacity, and density measurements which were used in the calorimetric calculation of the specific absorption rate (SAR) of …


A Parametric Analysis Of A Turbofan Engine With An Auxiliary Bypass Combustion Chamber – The Turboaux Engine, Kaleab Fetahi Dec 2020

A Parametric Analysis Of A Turbofan Engine With An Auxiliary Bypass Combustion Chamber – The Turboaux Engine, Kaleab Fetahi

Mechanical & Aerospace Engineering Theses & Dissertations

A parametric study of a novel turbofan engine with an auxiliary combustion chamber, nicknamed the TurboAux engine is presented. The TurboAux engine is conceived as an extension of a low-bypass turbofan engine with an auxiliary bypass annular combustion chamber around the core stream. The study presented in this thesis is motivated by the need to facilitate clean secondary burning of fuel at temperatures higher than conventionally realized, from air exiting the low-pressure compressor. The parametric study starts by analyzing the turbojet engine and its performance with and without an afterburner segment attached. Following that, the conventional turbofan and its mixing …


Parametric Study Of Residual Stresses In Wire And Arc Additive Manufactured Parts, Hisham Khaled Jamil Abusalma Dec 2020

Parametric Study Of Residual Stresses In Wire And Arc Additive Manufactured Parts, Hisham Khaled Jamil Abusalma

Mechanical & Aerospace Engineering Theses & Dissertations

Wire and Arc Additive Manufacturing (WAAM) is a cost-effective additive manufacturing process due to its capability to fabricate large metal parts with high deposition rate and low equipment cost. Although this method is gaining popularity in manufacturing industry, more research is needed to understand process parameters’ effects on residual stress (RS) distribution and part distortion. As such, a 3D thermo-elastic-plastic transient model was established in ABAQUS and employed to investigate the effect of process parameters such as the torch speed, the deposition power and the interlayer dwell time on RS distribution and distortion in WAAM part. The numerical model utilized …


Modulating Mechanical Properties Of Polymer Composites Via Colloidal Particle Reinforcement, Yusheng Guo Oct 2020

Modulating Mechanical Properties Of Polymer Composites Via Colloidal Particle Reinforcement, Yusheng Guo

LSU Master's Theses

Additive manufacturing allows the rapid process of complex objects with excellent design flexibility. However, the products often exhibit poor mechanical properties when pure polymer is applied as printable material. In this work, we demonstrate that printability of polymer can be dramatically improved when particle filler is added to form reinforced polymer composites. Furthermore, the interaction between filler and polymer matrix leads to the enhancement in mechanical properties of the printed product. The material reinforcement induced by addition of fillers enables the wide application of polymer composites to print structures with unique features. In the printing of silica-reinforced pNIPAM composite, we …


Thermal Control Development Of A Proton Exchange Membrane Fuel Cell System, Ola Mohammed Taha Al-Shalash Aug 2020

Thermal Control Development Of A Proton Exchange Membrane Fuel Cell System, Ola Mohammed Taha Al-Shalash

Mechanical Engineering Theses

A fuel cell is an electrochemical energy conversion device that uses fuel to generate electricity. It basically converts the chemical energy of reactants directly into electricity without combustion. In a Proton Exchange Membrane Fuel Cell (PEMFC), the reactants, hydrogen and oxygen, are fed into the two electrodes, anode and cathode, respectively. A reaction takes place at each electrode and produces electricity, as well as water, and heat as the by-products. In order to maximize performance of a fuel cell, many factors can be considered for tuning and control. Temperature management is one of these factors.

A thermal-fluid model of a …


New Modeling Approaches For The Prediction Of Combustion Pollutants, Phillip R. Johnson Aug 2020

New Modeling Approaches For The Prediction Of Combustion Pollutants, Phillip R. Johnson

McKelvey School of Engineering Theses & Dissertations

Combustion processes are ubiquitous to human technological development and provide many benefits such as large-scale power generation for electricity and transportation along with residential and commercial heating for manufacturing, cooking, and warmth. However, these various processes can also have harmful effects on human health and the environment via emission of CO2 and other pollutants such as NOx and particulate matter (PM; often in the form of soot). For these reasons, there is a continued need for controlling, improving, and optimizing combustion processes. Modeling of these processes provides powerful insights into system-level dynamics and their control. Due to the size and …


Aqueous Redox Flow Batteries With Boron Doped Diamond As An Electrode., Alex M. Bates Aug 2020

Aqueous Redox Flow Batteries With Boron Doped Diamond As An Electrode., Alex M. Bates

Electronic Theses and Dissertations

As the interest and implementation of renewable energy accelerates, so does that of grid energy storage. It is widely believed that a cost-effective energy storage technology will bring about the proliferation of renewable energy. Redox flow battery (RFB) technology represents a promising solution to cost-effective grid energy storage. Compared to other technologies, RFBs have a long lifetime, high efficiency, are non-flammable, significantly reduce cost, and separately scale power and energy. The separation of power and energy enables increased energy capacity by simply adding electrolyte volume. Of the challenges facing RFB technology, one readily apparent is the cost of the active …


Numerical And Experimental Analysis Of Air-Cooled Condensers, Kaipo Kekaula May 2020

Numerical And Experimental Analysis Of Air-Cooled Condensers, Kaipo Kekaula

UNLV Theses, Dissertations, Professional Papers, and Capstones

The scope of this project is to numerically and experimentally dry cooling process in air-cooled condensers (ACCs) designed for concentrated solar power (CSP) applications. This effort is driven by the growing economic and political pressure to reduce water consumption during power generation due to limited water resources in the arid geographic climate of the southwestern United States. A computational approach is used in conjunction with experimental validation to gain a more complete understanding of these systems.

Traditionally research into ACCs have been largely limited to air-side heat transfer modelling as it accounts for a large portion of the total thermal …


The Desorption Kinetics Of Methane From Nonaqueous Fluids For Enhanced Well Control, James Lee Nielsen Jr. Jan 2020

The Desorption Kinetics Of Methane From Nonaqueous Fluids For Enhanced Well Control, James Lee Nielsen Jr.

LSU Master's Theses

The mass transfer of a dissolved gas evolving to return to the gaseous phase from a liquid is governed by many parameters. This process affects the development of an oil and gas well due to the possibility of gas contamination occurring from either an influx entering the wellbore, or drilling through gas-bearing formations. Once this dissolved hydrocarbon gas circulates up the wellbore, it will begin to evolve from solution and poses a potential risk to drilling equipment, the environment, and personnel at a drilling rig. Being able to predict the behavior of gas desorption based on a known set of …


Zips Precious Plastics: Plastic Extruder, Patrick Cole Jan 2020

Zips Precious Plastics: Plastic Extruder, Patrick Cole

Williams Honors College, Honors Research Projects

This project's goal was to design and build an affordable desktop filament extruder that can precisely and consistently extrude filament to a certain tolerance acceptable for 3D printers using wasted printing material. The group is partnering with an on campus organization focusing on engineering applications for sustainable futures. Zips Precious Plastics is a student run design group that intends to bring an innovation space on campus to help educate students about the importance of a closed looped system within plastic manufacturing.


Experimental And Computational Characterization Of Sodium Nitrate @ Silica Nano Capsules For Thermal Energy Storage Applications, Wataru Hashimoto Jan 2020

Experimental And Computational Characterization Of Sodium Nitrate @ Silica Nano Capsules For Thermal Energy Storage Applications, Wataru Hashimoto

Graduate Research Theses & Dissertations

In this investigation, a nanocapsule composed of a sodium nitrate core and a silicon dioxide shell is synthesized, characterized, and analyzed utilizing a mixture of analytical and computational tools. The sol-gel method was selected as the process of nanoencapsulation. Analytical characterization techniques employed in this investigation include differential scanning calorimetry (DSC) to measure melting temperatures and enthalpies of fusion, dynamic light scattering (DLS) to calculate particle size distributions, scanning electron microscopy (SEM) to analyze surface characteristics, transmission electron microscopy (TEM) to perform shell characterization, and energy dispersive X-ray spectroscopy (EDS) to determine chemical composition. Preliminary results indicated a decrease in …


Electrification Of Domestic Hot Water To Aid The Integration Of Renewable Energy In The California Grid, Alejandro Cervantes Jan 2020

Electrification Of Domestic Hot Water To Aid The Integration Of Renewable Energy In The California Grid, Alejandro Cervantes

Cal Poly Humboldt theses and projects

Water heating in residential buildings, also known as domestic hot water (DHW), is the third largest use of energy after appliances and space conditioning. About 90% of the residential buildings in the state use natural gas fueled water heaters, 6% use electricity, and a small percent use liquefied petroleum gas (LPG) or solar water heaters. The current energy use associated with residential water heating is small relative to the total amount of energy consumption in the residential building sector, but it is still a contributor of greenhouse gas (GHG) emissions. Improving hot water systems can be beneficial for bill customer …


A Study On The Hydrodynamics Of A Bench-Scale Top-Fed Bubbling Fluidized Bed Gasifier Using Biomass And Coal As Feedstocks, Ali Can Sivri Jan 2020

A Study On The Hydrodynamics Of A Bench-Scale Top-Fed Bubbling Fluidized Bed Gasifier Using Biomass And Coal As Feedstocks, Ali Can Sivri

Graduate Theses, Dissertations, and Problem Reports

The production of synthetic gas (syngas) from renewable or carbon-neutral sources can significantly reduce greenhouse and other emissions associated with conventional fuels. One of the most promising technologies to efficiently convert carbonaceous feedstocks such as biomass, coal, or municipal waste into syngas for transportation, power, heat, electricity generation, and or production of added-value chemicals is the bubbling fluidized-bed gasifier (BFBG). However, the gasification process inside a BFBG is a very complex high-temperature multiphase flow phenomena still not well understood, particularly when binary mixtures are investigated. As a result, despite the numerous correlations in the literature developed to predict the hydrodynamics …


Radio Frequency Studies Of Soot Loading And Ammonia Storage On A Diesel Particulate Filter With A Scr Catalyst Coating, Shreyans Sethia Jan 2020

Radio Frequency Studies Of Soot Loading And Ammonia Storage On A Diesel Particulate Filter With A Scr Catalyst Coating, Shreyans Sethia

Dissertations, Master's Theses and Master's Reports

The radio frequency (RF) measurement technique has been shown to be a viable method for measurement of the amount of soot loaded onto DPF’s [1] and the amount of NH3 stored on SCR catalysts [2]. In one of the configurations, a microwave resonant cavity is formed by the metal can encasing the enclosed catalyst. Two metal probes acting as antennas are placed on either side of the catalyst. Power transmitted between the antennas is monitored as the frequency of the signal is swept. At certain frequencies, resonance is achieved. Measurements of the resonance frequencies, amplitude at resonance, and …


Thermal / Structural Analysis Of The Hb 650 Thermal Shield, Gerald J. Smith Jan 2020

Thermal / Structural Analysis Of The Hb 650 Thermal Shield, Gerald J. Smith

Graduate Research Theses & Dissertations

Fermilab’s PIP-II project’s superconducting linear accelerator (Linac) will drive the next generation of particle accelerators through a revolution in beam intensity. Key to beam intensification are the high efficiencies of niobium-tin superconducting radiofrequency (SRF) cavities operating at cryogenic temperatures near 5 Kelvin. A multifaceted approach is employed to achieve and maintain the extreme temperature. Vacuum provides the first barrier to thermal convection. Physical thermal intercept zones further isolate the exterior shell vacuum vessel at 300 Kelvin from the supercooled beamline. The first thermal intercept lies just inside the exterior vacuum vessel forming the 40 Kelvin zone. This 40K thermal shield …


Capillary Forces And Wetting Dynamics By Diffuse-Interface Modeling, Fanny Thomas Jan 2020

Capillary Forces And Wetting Dynamics By Diffuse-Interface Modeling, Fanny Thomas

Dissertations and Theses

Wetting phenomena underlie many natural and industrial processes, from the proper functioning of the lungs to the thin coating of surfaces. The three-phase interactions involved at microscopic scales play a critical role. Adding solid particles to an emulsion, for example, can drastically change the flow behavior due to capillary bridging between the particles. The study of these three-phase systems is especially relevant to the petroleum industry, where gas hydrates forming large clusters in subsea pipelines during crude oil transportation is a major concern. The dynamics of such systems is also of great interest from a fundamental perspective. Indeed describing non-equilibrium …


A Foundational Approach To Extrusion And Compounding, David Frankart Jan 2020

A Foundational Approach To Extrusion And Compounding, David Frankart

Williams Honors College, Honors Research Projects

With a history of nearly 200 years, polymer processing and compounding is constantly changing to fit the material science needs of the era. Exposure of undergraduate students to the technology and practices used in industry today in a lab setting would create new opportunities for experiential learning and growth. The objective was to set up a 0.75”, 25 L/D Thermo Haake single screw extruder for lab use and run trials of material in a single screw extruder to set up a basis for experiments. Trials were run of co-polyester resin through a single screw extruder with carbon fiber additives varying …


Coarse-Grained Dynamically Accurate Simulations Of Ionic Liquids At Vacuum-Interface, Tyler D. Stoffel Jan 2020

Coarse-Grained Dynamically Accurate Simulations Of Ionic Liquids At Vacuum-Interface, Tyler D. Stoffel

Theses and Dissertations--Mechanical Engineering

Ionic liquids, possessing improved properties in many areas of technical application, are excellent candidates as components in development of next-generation technology, including ultra-high energy batteries. If they are thus applied, however, extensive interfacial analysis of any selected ionic configuration will likely be required. Molecular dynamics (MD) provides an advantageous route by which this may be accomplished, but can fall short in observing some phenomena only present at larger time/length scales than it can simulate. Often times this is approached by coarse-graining (CG), with which scope of simulation can be significantly increased. However, coarse-grained MD systems are generally known to produce …