Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Mechanical Engineering

Electrode Development Of Water Electrolyzer Cells For Low-Cost And High-Efficiency Hydrogen Production, Shule Yu May 2022

Electrode Development Of Water Electrolyzer Cells For Low-Cost And High-Efficiency Hydrogen Production, Shule Yu

Doctoral Dissertations

A worldwide increase in energy demand and a latent crisis in the fossil fuel supply have spurred broad research in the renewable energy. Currently, most renewable energy resources (e.g., hydro, wind, solar, tide) face supply challenges as they are known to be intermittent, unstable, and locally shackled, which calls for urgent development in energy storage and conversion. Hydrogen is regarded as an ideal energy carrier with its advantages (e.g., high energy density, environmentally friendliness, and low weight). In practice, the proton exchange membrane electrolyzer cell (PEMEC) is considered to be one of the optimal hydrogen production and energy storage devices …


Structural Stability Of Thermosets During Material Extrusion Additive Manufacturing, Stian K. Romberg Dec 2021

Structural Stability Of Thermosets During Material Extrusion Additive Manufacturing, Stian K. Romberg

Doctoral Dissertations

Over the past decade, the scale of polymer additive manufacturing has been revolutionized with machines that print massive thermoplastic parts with greater geometric complexity than can be achieved by traditional manufacturing methods. However, the heat required to print thermoplastics consumes energy and induces thermal gradients that can reduce manufacturing flexibility and final mechanical properties. With the ability to be extruded at room temperature and excellent compatibility with fibers and fillers, thermoset resins show promise to decrease the energy consumption, expand the manufacturing flexibility, and broaden the material palette offered by large-scale polymer additive manufacturing. However, structural instability in the uncured …


Experimental And Computational Study Of Determining Mass Transport Parameters In Vanadium Redox Flow Batteries, Tugrul Y. Ertugrul Aug 2021

Experimental And Computational Study Of Determining Mass Transport Parameters In Vanadium Redox Flow Batteries, Tugrul Y. Ertugrul

Doctoral Dissertations

Vanadium redox flow batteries are a promising large-scale energy storage technology, but a number of challenges must be overcome for commercial implementation. At the cell level, mass transport contributes significantly to performance losses, limiting VRFB performance. Therefore, understanding mass transport mechanisms in the electrode is a critical step to mitigating such losses and optimizing VRFBs.

In this study, mass transport mechanisms (e.g. convection, diffusion) are investigated in a VRFB test bed using a strip cell architecture, having 1 cm2 active area. It is found that diffusion-dominated cells have large current gradients; convection-dominated cells have relatively uniform current distribution from …


Enhanced Kinetics And Modeling Of Pan-Based Carbon Felt Anodes In Vanadium Redox Flow Batteries, Michael Cyrus Daugherty Dec 2020

Enhanced Kinetics And Modeling Of Pan-Based Carbon Felt Anodes In Vanadium Redox Flow Batteries, Michael Cyrus Daugherty

Doctoral Dissertations

All-vanadium redox flow batteries (VRFBs) are a promising technology for grid-level energy storage, however, there are still several limitations in the forms of durability, efficiency, and overall costs, which are barriers to its commercial viability. With both bulk electrolyte flowing through its porous matrix and species flux at the solid-electrolyte interface, electrodes are the component of VRFB systems which host electrochemical reactions and facilitate contact between the liquid phase electrolyte and the electronically conductive solid phase. While the more limiting electrode in VRFB systems is dependent on the material, for polyacrylonitrile (PAN)-based carbon felts, the anode constitutes a larger portion …


Correlating Long-Term Lithium Ion Battery Performance With Solid Electrolyte Interphase (Sei) Layer Properties, Seong Jin An Aug 2017

Correlating Long-Term Lithium Ion Battery Performance With Solid Electrolyte Interphase (Sei) Layer Properties, Seong Jin An

Doctoral Dissertations

This study was conducted to understand effects of some of key factors (i.e., anode surface properties, formation cycling conditions, and electrolyte conditions) on solid electrolyte interphase (SEI) formation in lithium ion batteries (LIBs) and the battery cycle life. The SEI layer passivates electrode surfaces and prevents electron transfer and electrolyte diffusion through it while allowing lithium ion diffusion, which is essential for stable reversible capacities. It also influences initial capacity loss, self-discharge, cycle life, rate capability and safety. Thus, SEI layer formation and electrochemical stability are primary topics in LIB development. This research involves experiments and discussions on key factors …


Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion May 2017

Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion

Doctoral Dissertations

Uranium enrichment finds a direct and indispensable function in both peaceful and nonpeaceful nuclear applications. Today, over 99% of enriched uranium is produced by gas centrifuge technology. With the international dissemination of the Zippe archetypal design in 1960 followed by the widespread illicit centrifuge trafficking efforts of the A.Q. Khan network, traditional barriers to enrichment technologies are no longer as effective as they once were. Consequently, gas centrifuge technology is now regarded as a high-priority nuclear proliferation threat, and the international nonproliferation community seeks new avenues to effectively and efficiently respond to this emergent threat.

Effective response first requires an …


Impedance-Resolved Performance And Durability In Redox Flow Batteries, Alan Michael Pezeshki Dec 2016

Impedance-Resolved Performance And Durability In Redox Flow Batteries, Alan Michael Pezeshki

Doctoral Dissertations

The realization of redox flow batteries (RFBs) as a grid-scale energy solution depends on improving the performance and lifetime of the technology to decrease the high capital costs. The electrodes are a key component in the RFB; performance enhancement is often achieved through chemical or thermal treatments of commercially available porous carbon materials.

This dissertation uses impedance spectroscopy-based methods to gain insight into performance and durability in RFBs, enabling intelligent cell design. Initial work focused on understanding the impact of improved electrode and membrane properties on system performance. An accelerated stress test was then developed that can be used to …


Effects Of Ultrasonic Transducers On Heat Transfer In Packed Particle Beds, David Patrick Moseley Dec 2016

Effects Of Ultrasonic Transducers On Heat Transfer In Packed Particle Beds, David Patrick Moseley

Masters Theses

The objective of this study was to determine the effects of ultrasonic transducers on heat transfer in a packed particle bed heat exchanger. Although substantial research has been devoted to ultrasound, and the associated improvements in heat transfer, data regarding the effects on packed particle beds is non-existent. This is of particular interest given the potential to improve heat transfer in a wide variety of packed particle bed systems. A 42.9% increase in the heat transfer rate was demonstrated as the result of improved fluid convection throughout the packed particle bed. Secondary effects, including acoustic cavitation, acoustic streaming and local …


Computational Simulation Of Mass Transport And Energy Transfer In The Microbial Fuel Cell System, Shiqi Ou Dec 2015

Computational Simulation Of Mass Transport And Energy Transfer In The Microbial Fuel Cell System, Shiqi Ou

Doctoral Dissertations

This doctoral dissertation introduces the research in the computational modeling and simulation for the microbial fuel cell (MFC) system which is a bio-electrochemical system that drives a current by using bacteria and mimicking bacterial interactions found in nature. The numerical methods, research approaches and simulation comparison with the experiments in the microbial fuel cells are described; the analysis and evaluation for the model methods and results that I have achieved are presented in this dissertation.

The development of the renewable energy has been a hot topic, and scientists have been focusing on the microbial fuel cell, which is an environmentally-friendly …


Transport Resistance In Polymer Electrolyte Fuel Cells, Jon Patrick Owejan May 2014

Transport Resistance In Polymer Electrolyte Fuel Cells, Jon Patrick Owejan

Doctoral Dissertations

Fuel cells offer the potential for high efficiency energy conversion with only water and heat as significant products of the electrochemical reaction. For a cost-competitive product, fuel cell researchers are exploring the limits of the Pt catalyst loading in parallel with performance and durability trade-offs. A significant portion of the performance loss in low-cost PEMFCs is associated with the partial pressure of oxygen (for an air cathode) at the Pt surface. This dissertation explores the main components of oxygen transport resistance which are associated with diffusion through partially saturated porous media and the ionomer coating in the catalyst layer.

Under …


Design And Economic Analysis Of A Geothermal Vertical Coupled Heat Pump System For The University Of Tennessee, Knoxville Campus, Joseph W. Birchfield Iv, Will Kester, Jason Cho May 2014

Design And Economic Analysis Of A Geothermal Vertical Coupled Heat Pump System For The University Of Tennessee, Knoxville Campus, Joseph W. Birchfield Iv, Will Kester, Jason Cho

Chancellor’s Honors Program Projects

No abstract provided.


Characterization Techniques And Electrolyte Separator Performance Investigation For All Vanadium Redox Flow Battery, Zhijiang Tang Dec 2013

Characterization Techniques And Electrolyte Separator Performance Investigation For All Vanadium Redox Flow Battery, Zhijiang Tang

Doctoral Dissertations

The all-vanadium redox flow battery (VRFB) is an excellent prospect for large scale energy storage in an electricity grid level application. High battery performance has lately been achieved by using a novel cell configuration with advanced materials. However, more work is still required to better understand the reaction kinetics and transport behaviors in the battery to guide battery system optimization and new battery material development. The first part of my work is the characterization of the battery systems with flow-through or flow-by cell configurations. The configuration difference between two cell structures exhibit significantly different polarization behavior. The battery output can …


Sustainability Analysis Of Personal Transportation For Near Urban Commuting, Theodore Ansink, Matthew Atchley, Virginia Browning, Yue Cao, Michelle Everett, James Hall Jr, William R. Henson, Eugene Ng, Michael Picklesimer, Justin Ridenour, Scott Teeters, James Wilson May 2012

Sustainability Analysis Of Personal Transportation For Near Urban Commuting, Theodore Ansink, Matthew Atchley, Virginia Browning, Yue Cao, Michelle Everett, James Hall Jr, William R. Henson, Eugene Ng, Michael Picklesimer, Justin Ridenour, Scott Teeters, James Wilson

Chancellor’s Honors Program Projects

No abstract provided.


An Adaptive Nonparametric Modeling Technique For Expanded Condition Monitoring Of Processes, Matthew John Humberstone May 2010

An Adaptive Nonparametric Modeling Technique For Expanded Condition Monitoring Of Processes, Matthew John Humberstone

Doctoral Dissertations

New reactor designs and the license extensions of the current reactors has created new condition monitoring challenges. A major challenge is the creation of a data-based model for a reactor that has never been built or operated and has no historical data. This is the motivation behind the creation of a hybrid modeling technique based on first principle models that adapts to include operating reactor data as it becomes available.

An Adaptive Non-Parametric Model (ANPM) was developed for adaptive monitoring of small to medium size reactors (SMR) but would be applicable to all designs. Ideally, an adaptive model should have …