Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Mechanical Engineering

A Numerical Simulation Optimizing Droplet Motion Driven By Electrowetting, Jake M. Lesinski Jun 2019

A Numerical Simulation Optimizing Droplet Motion Driven By Electrowetting, Jake M. Lesinski

Master's Theses

A numerical simulation of electrowetting on a dielectric was performed in COMSOL to grant insight on various parameters that play a critical role in system performance. The specific system being simulated was the Open Drop experiment and the parameters being investigated were the applied voltage, contact angle at the advancing triple point, and droplet overlap onto neighboring actuated electrodes. These parameters were investigated with respect to their effect on droplet locomotion performance. This performance was quantified by the droplets velocity and the dielectrophortic (DEP) force’s magnitude; the DEP force was calculated from integration of the Maxwell Stress Tensor, however, the …


Effect Of Aerogel On The Thermal Performance Of Corrugated Composite Sandwich Structures, Jacob Dillon Chess Dec 2018

Effect Of Aerogel On The Thermal Performance Of Corrugated Composite Sandwich Structures, Jacob Dillon Chess

Master's Theses

Current insulation solutions across multiple industries, especially the commercial sector, can be bulky and ineffective when considering their volume. Aerogels are excellent insulators, exhibiting low thermal conductivities and low densities with a porosity of around 95%. Such characteristics make aerogels effective in decreasing conductive heat transfer within a solid. These requirements are crucial for aerospace and spaceflight applications, where sensitive components exist among extreme temperature environments. When implemented into insulation applications, aerogel can perform better than existing technology while using less material, which limits the amount of volume allocated for insulation. The application of these materials into composites can result …


Fluid Agitation Studies For Drug Product Containers Using Computational Fluid Dynamics, Matthew Hiroki Ichinose Dec 2018

Fluid Agitation Studies For Drug Product Containers Using Computational Fluid Dynamics, Matthew Hiroki Ichinose

Master's Theses

At Amgen, the Automated Vision Inspection (AVI) systems capture the movement of unwanted particles in Amgen's drug product containers. For quality inspection, the AVI system must detect these undesired particles using a high speed spin-stop agitation process. To better understand the fluid movements to swirl the particles away from the walls, Computational Fluid Dynamics (CFD) is used to analyze the nature of the two phase flow of air and a liquid solution.

Several 2-D and 3-D models were developed using Fluent to create simulations of Amgen's drug product containers for a 1 mL syringe, 2.25 mL syringe, and a 5 …


The Role Of Transport Phenomena In The Direct Oxidation Of Solid Fuels, Charles J. Banas Aug 2012

The Role Of Transport Phenomena In The Direct Oxidation Of Solid Fuels, Charles J. Banas

Master's Theses

Direct carbon fuel cells have shown promise for stationary power generation by utilizing the direct oxidation of a solid carbon fuel source at the anode. In laboratory settings, researchers have reported up to 300mA/cm2 of current density from these cells types which suffer from mass transport losses. This paper studies the surface properties of the solid fuel source, and describes the process of CO2 evolution through an analogy to pool boiling. In nucleate boiling (a subset of pool boiling) vapor bubbles grow from nucleation sites where gas are trapped in micro-cavities on the surface. Carbon surfaces possess these same features, …


Evaluation Of Cathode Materials For Low Temperature (500-700c) Solid Oxide Fuel Cells, Alexander M. Lassman Sep 2011

Evaluation Of Cathode Materials For Low Temperature (500-700c) Solid Oxide Fuel Cells, Alexander M. Lassman

Master's Theses

Solid oxide fuel cells (SOFC) have gained a great deal of interest, due to their potential for high efficiency power generation and ability to utilize hydrogen fuel, as well as various hydrocarbon-based fuels. A recent trend in SOFC development has been towards lower operating temperatures (500-700°C), which can substantially reduce the cost and complexity of the system. This thesis presents an investigation into state of the art Ba- and La- based cathode materials for use in low temperature (500-700°C) solid oxide fuel cells.

Synthesis of A-site deficient [A=0.97] Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF) was …


Applied Control Strategies At A Cogeneration Plant, Joseph William Burns Jun 2011

Applied Control Strategies At A Cogeneration Plant, Joseph William Burns

Master's Theses

The purpose of this paper is to demonstrate the effectiveness of “classical strategies for dynamic control” on authentic cogeneration processes. These strategies are applied to several processes at the University of Connecticut’s cogeneration plant. Case studies of their applications are presented in this paper. Strategies that are applied include the following:

1) The classical SISO feedback structure

2) The First Order Plus Dead Time (FOPDT) process model

3) The Internal Model Control (IMC) correlations for PI controller tuning

4) Static feed forward with feedback trim

5) Cascade Control


Temperature Influence And Heat Management Requirements Of Microalgae Cultivation In Photobioreactors, Thomas Hagen Mehlitz Feb 2009

Temperature Influence And Heat Management Requirements Of Microalgae Cultivation In Photobioreactors, Thomas Hagen Mehlitz

Master's Theses

Microalgae are considered one of the most promising feedstocks for biofuel production for the future. The most efficient way to produce vast amounts of algal biomass is the use of closed tubular photobioreactors (PBR). The heat requirement for a given system is a major concern since the best algae growth rates are obtained between 25-30 °C, depending on the specific strain. A procedure to determine temperature influence on algal growth rates was developed for a lab-scale PBR system using the species Chlorella. A maximum growth rate of 1.44 doublings per day at 29 °C (optimal temperature) was determined. In addition, …