Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Chemical Engineering

2018

Institution
Keyword
Publication

Articles 1 - 19 of 19

Full-Text Articles in Mechanical Engineering

Experimental And Numerical Characterization Of Multiphase Subsurface Oil Release, Feng Gao Dec 2018

Experimental And Numerical Characterization Of Multiphase Subsurface Oil Release, Feng Gao

Dissertations

Subsurface oil release is commonly encountered in the natural environment and engineering applications and has received the substantial attention of researchers after the disastrous Deepwater Horizon Blowout oil spill in 2009. The main focus on the present research is to systematically study the hydrodynamics of underwater oil jet under a variety of conditions, including the effect of dispersant and different gas to oil ratios (GOR) by using experimental measurement as well as a Computational Fluid Dynamics (CFD) approach, from which the measured turbulent characteristics (e.g., velocity, turbulent kinetic energy, turbulence dissipation rate, etc.) of underwater oil jet are thoroughly examined …


Cfd Modeling Of Smoke Movement In An Atrium, Robin Wu Dec 2018

Cfd Modeling Of Smoke Movement In An Atrium, Robin Wu

UNLV Theses, Dissertations, Professional Papers, and Capstones

The purpose of this paper is to better understand the behavior of smoke movement in an atrium. Thus gives first responders and civilians in and out of building a better understanding

With the advancements of modern technology, computers and softwares make simulation models possible such as fire models to simulate fire and smoke movements. In this paper, a computational fluid dynamic (CFD) software Fire Dynamic Simulator (FDS) is used to conduct a series of atrium tests to investigate the effectiveness of smoke exhaust systems. FDS solves the Navier-Stokes equations appropriate for low speed flows (Ma < 0.3) with an emphasis on smoke, heat transport and CO2 concentrations from fires. The default turbulence model used in FDS simulation is the Large Eddy Simulation (LES), which is the solution of Navier-Stokes equations at low speed.

The compartment tested was 9 …


Effect Of Aerogel On The Thermal Performance Of Corrugated Composite Sandwich Structures, Jacob Dillon Chess Dec 2018

Effect Of Aerogel On The Thermal Performance Of Corrugated Composite Sandwich Structures, Jacob Dillon Chess

Master's Theses

Current insulation solutions across multiple industries, especially the commercial sector, can be bulky and ineffective when considering their volume. Aerogels are excellent insulators, exhibiting low thermal conductivities and low densities with a porosity of around 95%. Such characteristics make aerogels effective in decreasing conductive heat transfer within a solid. These requirements are crucial for aerospace and spaceflight applications, where sensitive components exist among extreme temperature environments. When implemented into insulation applications, aerogel can perform better than existing technology while using less material, which limits the amount of volume allocated for insulation. The application of these materials into composites can result …


Fluid Agitation Studies For Drug Product Containers Using Computational Fluid Dynamics, Matthew Hiroki Ichinose Dec 2018

Fluid Agitation Studies For Drug Product Containers Using Computational Fluid Dynamics, Matthew Hiroki Ichinose

Master's Theses

At Amgen, the Automated Vision Inspection (AVI) systems capture the movement of unwanted particles in Amgen's drug product containers. For quality inspection, the AVI system must detect these undesired particles using a high speed spin-stop agitation process. To better understand the fluid movements to swirl the particles away from the walls, Computational Fluid Dynamics (CFD) is used to analyze the nature of the two phase flow of air and a liquid solution.

Several 2-D and 3-D models were developed using Fluent to create simulations of Amgen's drug product containers for a 1 mL syringe, 2.25 mL syringe, and a 5 …


Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta Dec 2018

Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta

Electronic Theses and Dissertations

Surging global water demand as well as changes to weather patterns and over exploitation of natural water sources, such as ground water, has made potable water a critical resource in many parts of the World already – one rapidly heading towards a crisis situation. Desalination has been adopted as a solution – this is however energy intensive and impractical for most of the developing countries - those most in need of water. A renewable source of energy is solar thermal and solar photovoltaic. A plentiful source of water is the humidity in the atmosphere. This research is to push the …


Molecular Dynamics Studies On Nanoscale Confined Liquids, Alper Celebi Oct 2018

Molecular Dynamics Studies On Nanoscale Confined Liquids, Alper Celebi

Mechanical Engineering Research Theses and Dissertations

Liquid transport in nanochannels have been attracting great interests, especially for last two decades, owing to its potential applicability in various fields including biochemistry, medical science and engineering. For exploring and generating new ideas in the field of nanofluidics, molecular simulation techniques have become an ideal way due to the experimental challenges impeding the field of nanofluidics in fabrication and measurements.

In this dissertation, we perform molecular dynamics simulations to investigate liquid transport behavior in nanoscale channels. The expanse of this dissertation concerns several fundamental topics in nanoscale liquid transport phenomena such as liquid properties in nanoscale confinements, interfacial flows …


Increased Energy Yield Through Fast Pyrolysis: Empowering Malawian Villages, Diehl Mutamba Jun 2018

Increased Energy Yield Through Fast Pyrolysis: Empowering Malawian Villages, Diehl Mutamba

Undergraduate Honors Theses

Biomass contributes to several renewable energy technologies. This project will explore the use of fast pyrolysis to produce fuels by designing an apparatus for fast pyrolysis. Malawian people harvest firewood from the forests, which is a major contributor to deforestation. Furthermore, they convert some of it to charcoal with about 10-15% efficiency to sell to city dwellers. The project will enable herbaceous fuels to replace wood, increase charcoal yields and create new products. Firewood and charcoal produce smoke and carbon monoxide (CO) that compromises the villagers’ health.

This project will address deforestation problems, improve sustainability, decrease health hazards and improve …


Development Of Microdialysis Probes In Series Approach Toward Eliminating Microdialysis Sampling Calibration: Miniaturization Into A Pdms Microfluidic Device, Randy Espinal Cabrera May 2018

Development Of Microdialysis Probes In Series Approach Toward Eliminating Microdialysis Sampling Calibration: Miniaturization Into A Pdms Microfluidic Device, Randy Espinal Cabrera

Graduate Theses and Dissertations

A new microdialysis sampling method and microfluidic device were developed in vitro. The method consisted of using up to four microdialysis sampling probes connected in series to evaluate the relative recovery (RR) of different model solutes methyl orange, fluorescein isothiocyanate (FITC)-dextran average mol. wt. 4,000 (FITC-4), FITC-10, FITC-20, and FITC-40. Different flow rates (0.8, 1.0, and 1.5 µL/min) were used to compare experimentally observed relative recoveries with theoretical estimations. With increasing the number of probes in series, the relative recovery increases and ~100% (99.7% ± 0.9%) relative recovery for methyl orange was obtained. For larger molecules such as fluorescein isothiocyanate …


Multicomponent Working Fluids In Organic Rankine Cycle Evaporators, Jennifer Fromm Mar 2018

Multicomponent Working Fluids In Organic Rankine Cycle Evaporators, Jennifer Fromm

Honors Theses

Organic Rankine cycles are a promising technology to convert waste heat energy into usable mechanical or electric power, giving them the potential to reduce fossil fuel emissions generated by traditional energy generation. The heat exchangers of these devices are of particular interest, as maximizing energy extraction from these free heat sources will increase net electrical power output. For this project I created a model to predict the effects of mixture working fluids on the evaporator performance of an organic Rankine cycle generator for a wide range of waste heat source temperatures. This model combines empirically derived heat exchanger performance parameters …


Analysis Of Aluminum-Air Battery By Physics-Based Mathematical Model, Chong Zhou Jan 2018

Analysis Of Aluminum-Air Battery By Physics-Based Mathematical Model, Chong Zhou

Graduate Research Theses & Dissertations

The demand of electrical energy system is increasing rapidly these days for diverse applications from portable electronics and electrical vehicles to grid-scale energy storage. Lithium-ion battery has been utilized for most of those applications, but due to high cost (about $600/ kWh) and lower energy density (0.37 kWh/kg), the advent of low cost and high performing battery system is required. In this study, we will revisit aluminum-air battery as a promising system which has excellent features such as high energy density of 2.8 kWh/kg, low cost, and safe in nature, but it was abandoned due to challenging issues. One of …


Investigation On The Potential Of A Co2 Capture System, Downstream Of The Aftertreatment System For A Heavy-Duty Engine Application, Murchana Pathak Jan 2018

Investigation On The Potential Of A Co2 Capture System, Downstream Of The Aftertreatment System For A Heavy-Duty Engine Application, Murchana Pathak

Dissertations, Master's Theses and Master's Reports

The transportation sector accounts for the second largest source of CO2 emissions after power generation. New Corporate Average Fuel Economy (CAFE) regulations are focusing on improving energy through reduced fuel consumption and greenhouse gas emissions. This work investigates the potential of a CO2 capture system downstream of an aftertreatment system for a heavy-duty engine application. Amine absorption has been described as one of the most effective ways to capture CO2 from the exhaust for point sources. Therefore, using thermal-swing absorption process with potassium carbonate (K2CO3) as the absorbent liquid, a process was analyzed …


Galvanic And Pitting Corrosion Of A Fastener Assembly, Julie Shallman Jan 2018

Galvanic And Pitting Corrosion Of A Fastener Assembly, Julie Shallman

Williams Honors College, Honors Research Projects

This research focuses on coupled galvanic/pitting corrosion of AA7075 when combined with stainless steel in a fastener assembly. A one-dimensional mathematical model of a well-mixed thin film electrolyte is developed to predict the damage profile of the AA7075 surface when its protective coating is damaged. The damage exposes the galvanic couple. A time dependent system of partial differential equations for potential, chloride concentration, aluminum ion concentration, and damage is developed and solved numerically. Two approaches to calculate the current density within aluminum pits are discussed. The first is a current balance between the cathodic, anodic and passive portions of the …


Investigation Of Combustion Characteristics Of A Heavy-Duty Diesel Engine Retrofitted To Natural Gas Spark Ignition Operation, Jinlong Liu Jan 2018

Investigation Of Combustion Characteristics Of A Heavy-Duty Diesel Engine Retrofitted To Natural Gas Spark Ignition Operation, Jinlong Liu

Graduate Theses, Dissertations, and Problem Reports

The conversion of existing diesel engines to natural-gas spark ignition operation by adding a gas injector in the intake manifold for fuel delivery and replacing the diesel fuel injector with a spark plug to initiate and control the combustion process can reduce U.S. dependence on petroleum imports and curtail engine-out emissions. As the conventional diesel combustion chamber (i.e., flat head and bowl-in-piston) creates high turbulence, the engine can operate leaner, which would increase its efficiency and reduce emissions. However, natural gas combustion in such retrofitted engines presents differences compared to that in conventional spark ignited engines. Subsequently, the main goal …


Developing A 3d In Vitro Model By Microfluidics, Hung-Ta Chien Jan 2018

Developing A 3d In Vitro Model By Microfluidics, Hung-Ta Chien

Dissertations and Theses

In vitro tissue models play an important role in providing a platform that mimics the realistic tissue microenvironment for stimulating and characterizing the cellular behavior. In particular, the hydrogel-based 3D in vitro models allow the cells to grow and interact with their surroundings in all directions, thus better mimicking in vivo than their 2D counterparts. The objective of this thesis is to establish a 3D in vitro model that mimics the anatomical and functional complexity of the realistic cancer microenvironment for conveniently studying the transport coupling in porous tissue structures. We pack uniform-sized PEGDA-GelMA microgels in a microfluidic chip to …


Reduced Exhaust Emissions Through Blending N-Butanol With Ultra Low Sulfur Diesel And Synthetic Paraffinic Kerosene In Reactivity Controlled Compression Ignition Combustion, Remi Gaubert Jan 2018

Reduced Exhaust Emissions Through Blending N-Butanol With Ultra Low Sulfur Diesel And Synthetic Paraffinic Kerosene In Reactivity Controlled Compression Ignition Combustion, Remi Gaubert

Electronic Theses and Dissertations

Increasing restrictions on the emitted exhaust emissions in diesel engines are becoming a more challenging task than in previous years. An electronic common rail fuel injection system and a port fuel injection (PFI) system were developed for an experimental engine to research dual fuel combustion. The experimental research was conducted at 1500 rpm and 4, 5, and 6 bar indicated mean effective pressure (IMEP). n-Butanol was port fuel injected at a 60% by mass fraction coupled with direct injection (DI) of three fuels, including ultra-low sulfur diesel (ULSD RCCI), a 50-50 wt-% blend of ULSD and butanol (ULSD-Bu RCCI), and …


Pressure-Driven Stabilization Of Capacitive Deionization, Landon S. Caudill Jan 2018

Pressure-Driven Stabilization Of Capacitive Deionization, Landon S. Caudill

Theses and Dissertations--Mechanical Engineering

The effects of system pressure on the performance stability of flow-through capacitive deionization (CDI) cells was investigated. Initial data showed that the highly porous carbon electrodes possessed air/oxygen in the micropores, and the increased system pressure boosts the gases solubility in saline solution and carries them out of the cell in the effluent. Upon applying a potential difference to the electrodes, capacitive-based ion adsorption occurs in competition with faradaic reactions that consume oxygen. Through the addition of backpressure, the rate of degradation decreases, allowing the cell to maintain its salt adsorption capacity (SAC) longer. The removal of oxygen from the …


Characterization Of Rotary Bell Atomizers Through Image Analysis Techniques, Jacob E. Wilson Jan 2018

Characterization Of Rotary Bell Atomizers Through Image Analysis Techniques, Jacob E. Wilson

Theses and Dissertations--Mechanical Engineering

Three methods were developed to better understand and characterize the near-field dynamic processes of rotary bell atomization. The methods were developed with the goal of possible integration into industry to identify equipment changes through changes in the primary atomization of the bell. The first technique utilized high-speed imaging to capture qualitative ligament breakup and, in combination with a developed image processing technique and PIV software, was able to gain statistical size and velocity information about both ligaments and droplets in the image data. A second technique, using an Nd:YAG laser with an optical filter, was used to capture size statistics …


Intermittency Effects On The Universality Of Local Dissipation Scales In Turbulent Boundary Layer Flows With And Without Free-Stream Turbulence, Sabah Falih Habeeb Alhamdi Jan 2018

Intermittency Effects On The Universality Of Local Dissipation Scales In Turbulent Boundary Layer Flows With And Without Free-Stream Turbulence, Sabah Falih Habeeb Alhamdi

Theses and Dissertations--Mechanical Engineering

Measurements of the small-scale dissipation statistics of turbulent boundary layer flows with and without free-stream turbulence are reported for Reτ ≈ 1000 (Reθ ≈ 2000). The scaling of the dissipation scale distribution is examined in these two boundary conditions of external wall-bounded flow.

Results demonstrated that the local large-scale Reynolds number based on the measured longitudinal integral length-scale fails to properly normalize the dissipation scale distribution near the wall in these two free-stream conditions, due to the imperfect characterization of the upper bound of the inertial cascade by the integral length-scale. When a length-scale based on Townsend's …


NoX Formation In Light-Hydrocarbon, Premixed Flames, Robert T. Hughes Jan 2018

NoX Formation In Light-Hydrocarbon, Premixed Flames, Robert T. Hughes

Theses and Dissertations--Mechanical Engineering

This study explores the reactions and related species of NOx pollutants in methane flames in order to understand their production and consumption during the combustion process. To do this, several analytical simulations were run to explore the behavior of nitrogen species in the pre-flame, post- flame, and reaction layer regions. The results were then analyzed in order to identify all "steady-state" species in the flame as well as the determine all the unnecessary reactions and species that are not required to meet a defined accuracy. The reductions were then applied and proven to be viable.