Open Access. Powered by Scholars. Published by Universities.®

Heat Transfer, Combustion Commons

Open Access. Powered by Scholars. Published by Universities.®

1,101 Full-Text Articles 1,597 Authors 899,965 Downloads 96 Institutions

All Articles in Heat Transfer, Combustion

Faceted Search

1,101 full-text articles. Page 13 of 45.

Survivability Investigation Of Cylindrical Shaped Water Cooled Probe In High Heat Flux Conditions, Joshua Osborne 2020 University of Tennessee, Knoxville

Survivability Investigation Of Cylindrical Shaped Water Cooled Probe In High Heat Flux Conditions, Joshua Osborne

Masters Theses

Diagnostics and data collection downstream of turbine engine augmentors and scramjet combustors provide critical information for turbine engine and scramjet engine developers. One important diagnostic tool is the use of imaging measurement instruments, which are primarily used by the aeropropulsion ground testing community to assess flame holder stability and uniformity in turbine engines. The survivability limitations of these imaging probes are important to understand for use in applications behind ramjet or scramjet engines, where mass flows and exhaust temperatures exceed typical engine augmentor exhaust streams. At a minimum, imaging data acquired behind ramjet and scramjet engines would be used to …


What Difference Does A Catalyst Make?, Tammy Guthrie, Mike Jackson, Holly Haney 2020 University of Arkansas, Fayetteville

What Difference Does A Catalyst Make?, Tammy Guthrie, Mike Jackson, Holly Haney

High School Lesson Plans

Students will use different catalysts for the decomposition of Hydrogen Peroxide, to determine if different catalysts affect the energy that is generated during the reaction.


Raysun's Infrared Raisin Dryer, Lucas Kensinger, Saraith Aispuro, Joe Vanacore 2020 California Polytechnic State University, San Luis Obispo

Raysun's Infrared Raisin Dryer, Lucas Kensinger, Saraith Aispuro, Joe Vanacore

General Engineering

The RaySuns senior project team was tasked with lowering the drying costs of raisins for River Ranch Raisins. In doing so, we explored several options for cutting costs: utilizing automation and exploring new drying technologies were our primary focus. We eventually planned a modular infrared heating mechanism which would be easy to automate in future projects. After manufacturing and testing an infrared heating mechanism, it was found that infrared drying could significantly cut costs versus the previous natural gas fired dryer tunnels while leaving room for automation. The infrared dryer was also shown to have the potential to create high-quality …


Design For Additive Manufacturing, Michael Charonnat, Leonardo Franco-Muñoz, Sam Noble, J.P. Purdom 2020 California Polytechnic State University, San Luis Obispo

Design For Additive Manufacturing, Michael Charonnat, Leonardo Franco-Muñoz, Sam Noble, J.P. Purdom

Mechanical Engineering

This document outlines the critical design details and timeline for the Design for Additive Manufacturing Senior Project sponsored by Solar Turbines, Inc. The scope of this project encompasses the redesign of two of Solar Turbine’s cast parts for metal additive manufacturing in order to minimize lead time, cost, and weight. With the overall objective of performing in-depth analysis exploring affordability & feasibility, this redesign process will aid Solar Turbines in expanding their knowledge of Design for Additive Manufacturing principles and enable them to further incorporate the use of additive manufacturing into their production processes. The first part that the team …


Analysis Of Burning Wood In The Transient State And The Application To Structural Design, Roberta Veliz, Kimberly Guzman 2020 California Polytechnic State University, San Luis Obispo

Analysis Of Burning Wood In The Transient State And The Application To Structural Design, Roberta Veliz, Kimberly Guzman

Architectural Engineering

Determining the extent of the contribution of exposed timber on compartment fire dynamics in open floor plans is a complex process. Designers traditionally used compartmentalization design methods which create spaces where flashover is likely, given the fuel load and ventilation conditions. However, due to the large geometric dimensions and spread of fuel, fires in open floor plans are more likely to remain as localized or traveling fires. As such, an understanding of not only ignition potential but also flame spread is critical to characterizing the contribution of exposed timber. An integral step in characterizing the potential contribution is through an …


Development Of Reduced Chemical Kinetic Models For The Numerical Simulation Of Combustion And Emissions Behavior Of Representative Conventional And Bio-Derived Fuels, Mazen A. Eldeeb 2020 California State University, Fresno

Development Of Reduced Chemical Kinetic Models For The Numerical Simulation Of Combustion And Emissions Behavior Of Representative Conventional And Bio-Derived Fuels, Mazen A. Eldeeb

Mineta Transportation Institute

The study addresses two of the main challenges facing combustion modeling for transportation fuels: simultaneous simulation of non-related combustion problems and reducing the computational cost of the modeling process itself. To address the first challenge, researchers determine a characteristic flame time from thermal diffusivity and laminar burning velocity. Researchers examine parametric dependence of flame time and ignition delay time on pressure, temperature and equivalence ratio for methane, based on validated chemical kinetic mechanisms. The study reveals flame time and ignition delay time show similar temperature dependence, flame time has stronger dependence on equivalence ratio and weaker dependence on pressure than …


The Effect Of Orientation On The Ignition Of Solids, David Morrisset 2020 California Polytechnic State University, San Luis Obispo

The Effect Of Orientation On The Ignition Of Solids, David Morrisset

Master's Theses

The ignition of a solid is an inherently complex phenomenon influenced by heat and mass transport mechanisms that are, even to this day, not understood in entirety. In order to use ignition data in meaningful engineering application, significant simplifications have been made to the theory of ignition. The most common way to classify ignition is the use of material specific parameters such as such as ignition temperature (Tig) and the critical heat flux for ignition (CHF). These parameters are determined through standardized testing of solid materials – however, the results of these tests are generally used in applications …


Fly Ash Based Geopolymer For High Temperature And High Compressive Strength Applications In Aggressive Environment, Aaryan Manoj Nair, Akm S. Rahman 2020 CUNY New York City College of Technology

Fly Ash Based Geopolymer For High Temperature And High Compressive Strength Applications In Aggressive Environment, Aaryan Manoj Nair, Akm S. Rahman

Publications and Research

Geopolymers are the results of geosynthetic reactions between aluminosilicates and strong bases. This results in chemical bonds between aluminum (Al), Silicon (Si)and oxygen (O) composing polymer rings in tetrahedral coordination. These bonds give them widespread useful applications such as high heat bearing ceramics, and base construction material whilst being far more environmentally conscious. The purpose of the experiment is to examine the effect of Silicon Carbide whisker and inorganic glass particles on thermal and mechanical properties of Geopolymers. This study will help understand the effect of various compositions and concentrations of SiO2 in mechanical strength. In this experiment, the …


Development And Application Of Elliptic Blending Lag K-Omega Sst Standard And Wall-Distance-Free Turbulence Model, Wenjie Shang 2020 Washington University in St. Louis

Development And Application Of Elliptic Blending Lag K-Omega Sst Standard And Wall-Distance-Free Turbulence Model, Wenjie Shang

McKelvey School of Engineering Theses & Dissertations

In recent decades, Computational Fluid Dynamics (CFD) has become the most widely used technology to understand the fundamental complex fluid dynamics of turbulent flows as well as for modeling of turbulent flows in industrial applications. In industrial applications, the widely used methodology is to solve Reynolds-Average Navier-Stokes Equations (RANS) equations in conjunction with a turbulence model since it strikes a balance between accuracy and computational cost compared to other high fidelity approaches namely the Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS), There are a large number of turbulence models proposed in past five decades, majority of them are …


The Development Of All Solid-State Optical Cryo-Cooler, Junwei Meng 2020 Doctoral Student, Optical Science and Engineering

The Development Of All Solid-State Optical Cryo-Cooler, Junwei Meng

Optical Science and Engineering ETDs

This dissertation describes the development of an all solid-state optical cryo-cooler. Crystals of 10% wt. ytterbium-doped yttrium lithium fluoride (Yb3+:YLF) are used to cool an infrared HgCdTe sensor payload to an absolute temperature below 135 K, equivalent to delta T equal 138 K below ambient. This record level of cooling is accomplished with a single stage, in a completely vibration-free environment, with a corresponding cooling power of 190 mW. This milestone is made possible by the design and fabrication of an undoped YLF thermal link that efficiently shields the payload with a non-right angle kink from intense anti-Stokes …


A Study Of The Efficiency And Effectiveness Of The First Four Iterations Of Sierpinski Carpet Fractal-Like Fins At Increasing Angles In Natural Convection, Sophia N. Fleri 2020 Georgia Southern University

A Study Of The Efficiency And Effectiveness Of The First Four Iterations Of Sierpinski Carpet Fractal-Like Fins At Increasing Angles In Natural Convection, Sophia N. Fleri

Honors College Theses

Fractal geometries have been found in several studies to increase a fin’s thermal performance. Both the reductions of volume and mass accompanied by an increase in performance are desirable to prevent malfunction of the device through passive heat dissipation. The Sierpinski carpet fractal pattern, beginning with a basic square geometry in which an increasing number of perforations are incorporated through each successive iteration, reduces the fin’s mass while increasing its surface area simultaneously; this increase in surface area increases the rate of heat transfer experienced across the fin. The first four iterations of the Sierpinski carpet pattern, each with identical …


Enhancement Of Phase Change Material Sorbitol By Nanoparticle Inclusion For Improving Thermal Energy Storage Capabilities, Joshua Kasitz 2020 University of Arkansas, Fayetteville

Enhancement Of Phase Change Material Sorbitol By Nanoparticle Inclusion For Improving Thermal Energy Storage Capabilities, Joshua Kasitz

Mechanical Engineering Undergraduate Honors Theses

Thermal management of electronic devices has become an increasingly vital field of study with the rapid miniaturization of many key electrical components. With the significant improvement of semiconductor manufacturing and intensified focus on interconnects, electronic devices have decreased in size at an incredible rate. Decreasing spatial requirements is essential to improving device capabilities as the electronic system is able to incorporate more components. Currently, electronic systems are drastically limited by the capabilities of their cooling mechanisms. Smaller devices lead to large increases in the energy density of the system and require more powerful cooling systems to maintain proper component operating …


Computational Analysis Of A New Planar Mixing Layer Flame Configuration To Study Soot Inception, Carmen Ciardiello 2020 University of Connecticut - Storrs

Computational Analysis Of A New Planar Mixing Layer Flame Configuration To Study Soot Inception, Carmen Ciardiello

Honors Scholar Theses

The production of soot is omnipresent in society today. Soot is the product of many of the combustion processes that provide the bulk of the usable energy throughout the world. Furthermore, soot particulate poses a great danger to both the environment and all forms of life on Earth. It has proven to pollute ecosystems, foster health problems for human beings, and degrade air quality [1].

These dangers make studying and understanding soot particulate paramount for improving the quality of life. Thus, this study introduces a new flame configuration for studying soot inception. Presently, various common flame configurations have been found …


Portable Calorimeter For Fire Experiments, Kayla Collins, Kara Hewson, Christopher Chen, Joel Keddie 2020 California Polytechnic State University, San Luis Obispo

Portable Calorimeter For Fire Experiments, Kayla Collins, Kara Hewson, Christopher Chen, Joel Keddie

Mechanical Engineering

Executive Summary

An oxygen consumption calorimeter works by measuring the heat release rate of a burning substance. This value is calculated by measuring the oxygen and byproducts in smoke from afire.In order to get these values two types of sensors were used. A non-dispersive infrared sensor (NDIR) that measured CO and CO2 and a zirconium O2 sensor were used to find their respective gas concentrations.The design to calculate the heat release rate is focused on maximizing sensor accuracy and portability while simplifying the manufacturing by using off-the-shelf components. The goal included making the system simple to recreate and package in …


Experimental Evaluation Of Heat Leak And Convective Heat Transfer In A Household Freezer., Catherine E. Berghuis 2020 University of Louisville

Experimental Evaluation Of Heat Leak And Convective Heat Transfer In A Household Freezer., Catherine E. Berghuis

Electronic Theses and Dissertations

Heat leak into household refrigerated cabinets is a key driver affecting energy consumption and efficiency of the cooling system. Additionally, knowledge of heat transfer coefficients of internal surfaces is valuable in the development of cabinet and system level performance simulations. Several studies have examined heat leak of refrigeration units using heat flux sensors (HFS); however, no such studies have used heat flux measurements to derive convective heat transfer coefficients of the refrigerated unit walls. The goal of this study is to evaluate the use of HFS to quantify heat leak into a 490-liter freezer and determine the wall convective heat …


Emissivity Measurements Of Painted And Aerosol Deposited Thermographic Phosphors (Yag:Dy And Mfg:Mn), Wendy Flores-Brito 2020 University of New Mexico - Main Campus

Emissivity Measurements Of Painted And Aerosol Deposited Thermographic Phosphors (Yag:Dy And Mfg:Mn), Wendy Flores-Brito

Mechanical Engineering ETDs

Combustion is one of the most difficult processes to model. Luminous flames are characteristically sooty, which creates a problem when modeling and calculating the combustion and heat transfer of the process; both of which are highly dependent on temperature and emissivity. Soot particle emissivity as well as gas contributions affect the heat transfer calculation and must be accounted for.

Thermographic phosphors (TP) are ceramic based phosphorescent materials that have a temperature dependent emission that can be exploited to obtain surface and gas temperature measurements, as well as 2D temperature maps. Emissivity knowledge is not needed to obtain temperature and is …


Research Tools And Their Uses For Determining The Thermal Inactivation Kinetics Of Salmonella In Low-Moisture Foods, Soon Kiat Lau 2020 University of Nebraska-Lincoln

Research Tools And Their Uses For Determining The Thermal Inactivation Kinetics Of Salmonella In Low-Moisture Foods, Soon Kiat Lau

Department of Food Science and Technology: Dissertations, Theses, and Student Research

The reputation of low-moisture foods as safe foods has been crumbling over the past decade due to repeated involvement in foodborne illness outbreaks. Although various pasteurization technologies exist, a majority are thermal processes and have not been well-characterized for pasteurizing low-moisture foods. In addition, the nature of a low-moisture food matrix introduces various experimental complications that are not encountered in high-moisture foods. In this dissertation, the development, building instructions, and characterization of various open source tools for studying the inactivation kinetics of microorganisms in low-moisture foods are described. The first tool is the TDT Sandwich, a dry heating device for …


Basic Utilities Vehicle (Buv) Milk Transportation, Brian D. Reynolds, Sean Patrick Bayless Galligar, Emmitt Hanner, Joshua T. Pitts 2020 Olivet Nazarene University

Basic Utilities Vehicle (Buv) Milk Transportation, Brian D. Reynolds, Sean Patrick Bayless Galligar, Emmitt Hanner, Joshua T. Pitts

Scholar Week 2016 - present

In developing countries, a need exists for the transportation of raw foods to communities without spoilage. Traditional methods of transporting goods don’t meet the needs of the consumer, and often times food is wasted due to the harsh climate and time constraints. Food often becomes salvage under the heat, causing a hurt to the profitability of vendors and family needs for fresh produce. In particular milk transportation has become difficult, due to the lack of cold storage in standard transit. As a response to the need for affordable raw food transport, our sponsor Basic Utilities Vehicle (BUV) has tasked us …


Thermal Modeling Of Additive Manufacturing Using Graph Theory: Validation With Directed Energy Deposition, Jordan Severson 2020 University of Nebraska - Lincoln

Thermal Modeling Of Additive Manufacturing Using Graph Theory: Validation With Directed Energy Deposition, Jordan Severson

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Metal additive manufacturing (AM/3D printing) offers unparalleled advantages over conventional manufacturing, including greater design freedom and a lower lead time. However, the use of AM parts in safety-critical industries, such as aerospace and biomedical, is limited by the tendency of the process to create flaws that can lead to sudden failure during use. The root cause of flaw formation in metal AM parts, such as porosity and deformation, is linked to the temperature inside the part during the process, called the thermal history. The thermal history is a function of the process parameters and part design.

Consequently, the first step …


Quantifying Wicking In Functionlized Surfaces, Maureen Winter, Ryan Regan, Alfred Tsubaki, Craig Zuhlke, Dennis Alexander, George Gogos 2020 University of Nebraska - Lincoln

Quantifying Wicking In Functionlized Surfaces, Maureen Winter, Ryan Regan, Alfred Tsubaki, Craig Zuhlke, Dennis Alexander, George Gogos

UCARE Research Products

Wicking remains the enigmatic key factor in many research areas. From boiling in power plants, to anti-icing on plane wings, to medical instruments, to heat pipes, efficiency and safety depend on how quickly a surface becomes wet. Yet wicking remains difficult to quantify and define as a property of the surface. This experiment strives to measure the wicking property by examining the rate that a liquid can be pulled out of a container. A superhydrophilic surface is placed in contact with the liquid at the bottom of a tube so that the volume flow rate across the surface can be …


Digital Commons powered by bepress