Open Access. Powered by Scholars. Published by Universities.®

Heat Transfer, Combustion Commons

Open Access. Powered by Scholars. Published by Universities.®

1,095 Full-Text Articles 1,579 Authors 899,965 Downloads 94 Institutions

All Articles in Heat Transfer, Combustion

Faceted Search

1,095 full-text articles. Page 10 of 45.

Desalination For Sustainable Water Production With An Emphasis On Low Pressure Distillation, Jessica Vivian Savage 2021 Embry-Riddle Aeronautical University

Desalination For Sustainable Water Production With An Emphasis On Low Pressure Distillation, Jessica Vivian Savage

Doctoral Dissertations and Master's Theses

Freshwater resources depletion is a growing concern. This freshwater scarcity motivates research into seawater desalination as a means for alleviating the stresses on water demands. The primary methods of desalination include filtration and distillation. This paper explores the potential energy savings of vacuum distillation for seawater desalination to reduce the amount of energy needed to achieve phase change.

Depending on the vacuum boiler design, the vaporization mechanism may be boiling, evaporation, or cavitation. There is very little literature on cavitation that involves mass transfer, so cavitation is not developed here. This thesis focuses on standard models for boiling and evaporation …


An Investigation Of The Effects Of Variable Magnetic Field Gradients On Soot And Co Emissions From Non-Premixed Hydrocarbon Flames, Edison Ekperechukwu Chukwuemeka 2021 Louisiana State University and Agricultural and Mechanical College

An Investigation Of The Effects Of Variable Magnetic Field Gradients On Soot And Co Emissions From Non-Premixed Hydrocarbon Flames, Edison Ekperechukwu Chukwuemeka

LSU Doctoral Dissertations

The interaction of the paramagnetic species in a combustion process with the mag- netic field placed in the vicinity of non-premixed flames affects the characteristics of the non-premixed flames - flame height and flame lift-off height. However, the effect of this magnetic interaction on the pollutants generated by the flame is unknown.

In general, pollutant formation is promoted in most combustion systems due to in- complete combustion of the hydrocarbon due to improper mixing. Since paramagnetic combustion species such as O2, O, OH, etc interacts with magnetic fields and possess a preferential motion direction, imposing magnetic field on non-premixed flames …


Feasibility Study Of Portable Solar Powered Blood Storing Refrigerator, Saroj Subedi 2021 University of Mississippi

Feasibility Study Of Portable Solar Powered Blood Storing Refrigerator, Saroj Subedi

Honors Theses

This report is focused on the preliminary feasibility of portable solar-powered blood-storing refrigerators primarily based on calculations of energy required to maintain the temperature of the refrigerator, the electricity required throughout the day, calculating sufficiency of power supplied by the solar panel, and selection of battery for power storage. The method and the trend of a feasibility study involve the study of blood properties, separation of blood components after donation, and their storage conditions. Then, the portable size of the refrigeration has been proposed with three different compartments for storage of each blood component. The further methods involve the selection …


Characterization Of Near Isothermal Compression And Expansion For Energy Storage, Saiid Kassaee 2021 University of Tennessee, Knoxville

Characterization Of Near Isothermal Compression And Expansion For Energy Storage, Saiid Kassaee

Doctoral Dissertations

As the global share of electricity generation from intermittent renewable energy sources increases, developing efficient and scalable electricity storage technologies becomes critical to modernizing the grid, matching the supply and demand, and raising the capacity factor of renewable generation. The Ground-Level Integrated Diverse Energy Storage (GLIDES) is an efficient energy storage technology invented at Oak Ridge National Laboratory (ORNL). GLIDES stores energy by compressing gas using a liquid piston in pressure vessels benefiting from employing hydraulic turbomachinery which are more efficient than gas turbomachinery. Therefore, GLIDES has higher round-trip efficiency (RTE) than Compressed Air Energy Storage (CAES). Since GLIDES employs …


Transient Performance And Melt Front Characterization Of Phase Change Materials, Tyler Stamps 2021 University of Arkansas, Fayetteville

Transient Performance And Melt Front Characterization Of Phase Change Materials, Tyler Stamps

Mechanical Engineering Undergraduate Honors Theses

Thermal management systems are often over-designed for average use in order to handle spikes in heat generation, which increases the spatial and financial requirements. One way to mitigate this is via the use of phase change materials (PCMs) as thermal buffers and storage media. This material type exhibits excellent latent heat at the sacrifice of conductivity. The present paper examines the melt front behavior of a common solid to liquid PCM, paraffin, experimentally and numerically. The experimental scenario was a block of PCM with a constant temperature heat flux introduced on one end and a constant temperature cold boundary condition …


Algorithm Development Of Topology Optimization For Pcm Based Heat Sinks, Diego L. de los Reyes 2021 University of Arkansas, Fayetteville

Algorithm Development Of Topology Optimization For Pcm Based Heat Sinks, Diego L. De Los Reyes

Mechanical Engineering Undergraduate Honors Theses

With the inherent usage of the computer when dealing with additive manufacturing, it only makes sense to use that higher computing power through simulation and iterative design to use the mathematical concept of topology and optimize the kind of geometry and shapes to be produced for a certain application, especially thermal ones since most 3D printing applications focus on purely the mechanical. To determine what the shape will be, an objective function of how much heat can be dispersed from a hypothetical heat source, assumed to be a type of electronic device, is maximized while being constrained by other variables, …


Thermal Testing And Characterization Of Nanoparticles Synthesized For Biological Treatment, Tonie Butler 2021 University of Arkansas, Fayetteville

Thermal Testing And Characterization Of Nanoparticles Synthesized For Biological Treatment, Tonie Butler

Mechanical Engineering Undergraduate Honors Theses

The overall goal of this research project is to synthesize iron core, silica capped nanoparticles that, when they are exposed to a particular magnetic field, will react by increasing in temperature and emitting substantial thermal output. They will be injected into the human body for biological benefit by targeted thermal radiation. Once in the human body, ideally, they will be able to target a specific area, and then a magnetic field will be applied to induce thermal output through the process of hyperthermia. As the nanoparticles emit heat, they will mimic the natural bodily behavior seen by way of hyperthermia, …


Experimental Investigation Of Spray Cooling/Heating Of A Near-Isothermal Hydro-Pneumatic Energy Storage System, Saiid Kassaee 2021 University of Tennessee, Knoxville

Experimental Investigation Of Spray Cooling/Heating Of A Near-Isothermal Hydro-Pneumatic Energy Storage System, Saiid Kassaee

Masters Theses

Proposing experimental investigation of spray cooling/heating of a near-isothermal, scalable, efficient, high density, hydro-pneumatic integrated energy storage system; capable of spray cooling/heating during gas compression/expansion and capable of excess heat integration. The invented Ground-Level Integrated Diverse Energy Storage (GLIDES) is an energy storage technology capable of storing energy in high-pressure vessel using hydro-pneumatic concept. Indicated roundtrip efficiencies of 98% can be reached using the proposed technology marking an isothermal compression/expansion energy storage.


Enercon Station Vacuum Pump Replacement, Clint Hembree, Jared D'Amico, Connor Moore, Paul Jeffrey Fontenot, Sydnee Castello, J.J. Clements 2021 Kennesaw State University

Enercon Station Vacuum Pump Replacement, Clint Hembree, Jared D'Amico, Connor Moore, Paul Jeffrey Fontenot, Sydnee Castello, J.J. Clements

Senior Design Project For Engineers

This details the progress of the ENERCON pump replacement project as completed by the Kennesaw State University interdisciplinary senior design group. This project is a two-semester capstone effort for the engineering program at Southern Polytechnic School of Engineering, overseen by Dr. McFall during Fall 2020 and Dr. Khalid during Spring 2021 semesters. The 2020-2021 KSU Interdisciplinary Senior Design team was tasked with completing an Engineering Change Package (ECP) for existing vacuum pumps at ENERCON Station. The mechanical, electrical, and civil students worked together, performing evaluations on existing plant systems to ensure the plant could support the new vacuum pumps. By …


Investigation Of Dusting Hole Film Cooling On A Transonic Turbine Blade Tip With A Squealer, Matthew Cox 2021 University of Alabama in Huntsville

Investigation Of Dusting Hole Film Cooling On A Transonic Turbine Blade Tip With A Squealer, Matthew Cox

Honors Capstone Projects and Theses

No abstract provided.


Relationship Between Thermal Conductivity And Free Electrons In Metal, Yansong Liu 2021 Linfield University

Relationship Between Thermal Conductivity And Free Electrons In Metal, Yansong Liu

Senior Theses

An experiment was designed and conducted to explore the relationship between thermal conductivity with free electrons in metal. In the experiment, copper, iron, aluminum, and titanium rods with close diameters were used to carry out the experiment. Each rod was heated up by a heat unit at one end while cooled on the other end with a heat sink to maintain a steady state. DC current was applied to rods in the direction along, as well as against, the heat flow. Thermal conductivities were measured in these two situations for each rod. Results showed electrons do dominate thermal flow inside …


Thermal Ignition Of A Combustible Over An Inclined Hot Plate, Salaika Parvin, Nepal Chandra Roy, Rama S. R. Gorla 2021 Air Force Institute of Technology

Thermal Ignition Of A Combustible Over An Inclined Hot Plate, Salaika Parvin, Nepal Chandra Roy, Rama S. R. Gorla

Faculty Publications

In this study, the ignition characteristics and the flow properties of the mixed convection flow are presented. Detailed formulations of the forced, natural and mixed convection problems have been discussed. In order to avoid inconvenient switch between the forced and natural convection we introduce a continuous transformation in the mixed convection. We make a comparison between these situations which reveal a good agreement. For mixed convection flow, the ignition distance is explicitly expressed as a function of the Prandtl number, reaction parameter and wall temperature. It has been observed that owing to the increase of the aforesaid parameters, the thermal …


Experimental Investigation Of The Effects Of Acoustic Waves On Natural Convection Heat Transfer From A Horizontal Cylinder In Air, Katherina V. Prodanov 2021 California Polytechnic State University, San Luis Obispo

Experimental Investigation Of The Effects Of Acoustic Waves On Natural Convection Heat Transfer From A Horizontal Cylinder In Air, Katherina V. Prodanov

Master's Theses

Heat transfer is a critical part of engineering design, from the cooling of rocket engines to the thermal management of the increasingly dense packaging of electronic circuits. Even for the most fundamental modes of heat transfer, a topic of research is devoted to finding novel ways to improve it. In recent decades, investigators experimented with the idea of exposing systems to acoustic waves with the hope of enhancing thermal transfer at the surface of a body. Ultrasound has been applied with some success to systems undergoing nucleate boiling and in single-phase forced and free convection heat transfer in water. However, …


Numerical Reconstruction Of Spalled Particle Trajectories In An Arc-Jet Environment, Raghava S. C. Davuluri, Sean C. C. Bailey, Kaveh A. Tagavi, Alexandre Martin 2021 University of Kentucky

Numerical Reconstruction Of Spalled Particle Trajectories In An Arc-Jet Environment, Raghava S. C. Davuluri, Sean C. C. Bailey, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

To evaluate the effects of spallation on ablative material, it is necessary to evaluate the mass loss. To do so, a Lagrangian particle trajectory code is used to reconstruct trajectories that match the experimental data for all kinematic parameters. The results from spallation experiments conducted at the NASA HYMETS facility over a wedge sample were used. A data-driven adaptive methodology was used to adapts the ejection parameters until the numerical trajectory matches the experimental data. The preliminary reconstruction results show that the size of the particles seemed to be correlated with the location of the ejection event. The size of …


Modeling Thin Layers In Material Response Solvers, Christen Setters 2021 University of Kentucky

Modeling Thin Layers In Material Response Solvers, Christen Setters

Theses and Dissertations--Mechanical Engineering

Thermal Protection Systems (TPS) are a necessary component for atmospheric entry. Most TPS contain thin layers of various materials such as ceramic coatings, pore sealers and bonding agents. When modeling TPS, these thin layers are often neglected due to the difference in scale between the TPS (centimeters) and the thin layers (micrometers). In this study, a volume-averaging flux-conservation method is implemented in the governing equations of a finite volume material response code. The model proposes the addition of a volume and area fraction coefficient which utilizes a weighted-averaging between the amount of thin layer and heat shield material in a …


Pulse Decay Thermal Conductivity Device, Matthew Schrenk 2021 Central Washington University

Pulse Decay Thermal Conductivity Device, Matthew Schrenk

All Undergraduate Projects

Currently, there are several ways in which thermal conductivity can be calculated or assessed on a given material. However, with each method of testing comes potential limitations such as size, material state, complexity, and time. The goal of this study was to develop a pulse heated thermistor that would reduce all four limitations, thus provide precise and timely results regardless of the material state and size. A thermistor is resistor which changes resistance in accordance to temperature. To achieve the design, heat transfer and electrical methods were applied. As with all resistors, heat is dissipated across the element and released …


Thermal Conductivity Measuring System (Tcoms), Lucas Hill 2021 Central Washington University

Thermal Conductivity Measuring System (Tcoms), Lucas Hill

All Undergraduate Projects

The Mechanical Engineering Technology department at Central Washington University is lacking a method to reliably measure the thermal conductivity of bulk materials, with dimensions of at least a 1 cm radius, within a teaching environment. Thermal Conductivity Measuring System (TCoMS) will be a useful tool to perform these measurements as it is able to obtain measurement readings for materials between 0 C and 50 C within 20 seconds. TCoMS will accomplish this by using the pulse decay method of measuring thermal conductivity, a form of transient heat transfer analysis. This method is performed by generating a pulse of heat at …


Tensile Environment Chamber, Cameron Ngai, Trent Hamilton, Mitchell Carroll, Jack Molitor 2021 California Polytechnic State University, San Luis Obispo

Tensile Environment Chamber, Cameron Ngai, Trent Hamilton, Mitchell Carroll, Jack Molitor

Mechanical Engineering

This project created the heating system, cooling system, and control system for an environmental chamber for a tensile test machine in the Cal Poly Composites Lab. This chamber allows for students to test material properties under a variety of thermal conditions. This project was done in collaboration with a team working on the structural aspect of the chamber. While consumer environmental chambers are on the market, they often cost more than $50,000. Additionally, our chamber conforms to further size and weight constraints. Because of this constraint, many conventional techniques and components used for these chambers are not feasible for our …


Waste Heat Recovery Of Industrial Regenerative Thermal Oxidizer (Rto), A Case Study, James Trimpe Jr. 2021 University of Kentucky

Waste Heat Recovery Of Industrial Regenerative Thermal Oxidizer (Rto), A Case Study, James Trimpe Jr.

Theses and Dissertations--Mechanical Engineering

Industrial processes that utilize and release hazardous compounds into the atmosphere are required to break down those compounds before exhausting them from their facilities. An industry-recognized method to break down those hazardous compounds is through thermal oxidation. Thermal oxidation is a process where the compounds are exposed to their auto-ignition temperature in an oxygen-rich environment and combust. The output of thermal oxidation is carbon dioxide, water vapor, and heat. Thermal oxidizers are equipment that performs the thermal oxidation process. The heat output from thermal oxidizers is wasted if directly exhausted into the atmosphere. Regenerative thermal oxidizers (RTOs) use the waste …


Effect Of Heat Treatment On Microstructure And Hardness Of A Worn Rail Repaired Using Laser Powder Deposition, Ershad Mortazavian, Zhiyong Wang, Hualiang Teng 2021 University of Nevada, Las Vegas

Effect Of Heat Treatment On Microstructure And Hardness Of A Worn Rail Repaired Using Laser Powder Deposition, Ershad Mortazavian, Zhiyong Wang, Hualiang Teng

Mechanical Engineering Faculty Research

The frequent replacement of worn rails on tracks brings an immense economic burden on the railroad industry, and also causes significant interruptions to railroad operation. Restoration of worn rails via laser powder deposition (LPD) can considerably reduce the associated maintenance costs. This study was focused on the use of LPD to repair the worn profile of a standard U.S. rail. The microstructure of the 304L stainless steel deposits with a minimum hardness of 85 HRB was composed of austenite, δ-ferrite, and sigma. Micropores were dispersed throughout the deposit, and microcracks were found at the rail-deposition interface. The pearlitic rail substrate …


Digital Commons powered by bepress