Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

1,088 Full-Text Articles 1,781 Authors 572,581 Downloads 92 Institutions

All Articles in Polymer and Organic Materials

Faceted Search

1,088 full-text articles. Page 44 of 50.

Evaluation Of Corrosion Properties Of Proprietary Metal Alloy Stents For In-Vivo Use, Michael David Bremner 2013 California Polytechnic State University - San Luis Obispo

Evaluation Of Corrosion Properties Of Proprietary Metal Alloy Stents For In-Vivo Use, Michael David Bremner

Materials Engineering

To assess corrosion rates of metal alloy bio-absorbable stents an experimental set-up was designed to mimic the coronary artery environment. The artery was modeled using 4mm diameter Tecoflex tubing and the metal alloy stents were inserted into the tubing using a catheter. As is the case in cardiac surgery, the catheter with the stent and a microballoon were maneuvered to the desired position. The microballoon was then slowly inflated to expand the stent and compress it against the tubing walls. The catheter and microballoon were then withdrawn. A circulating pump system was set up to cycle fetal bovine serum (FBS) …


Analyzing The Acoustical Properties Of Alternative Materials In Guitar Soundboards To Reduce Deforestation, Chris Dunn 2013 California Polytechnic State University - San Luis Obispo

Analyzing The Acoustical Properties Of Alternative Materials In Guitar Soundboards To Reduce Deforestation, Chris Dunn

Materials Engineering

To mitigate the effects of deforestation, man-made alternative materials were analyzed and tested for potential use in the soundboards of acoustic guitars. The materials evaluated included 0.06 in. foamed polycarbonate, 0.12 in. single-ply honeycomb fiberglass, and 0.04 in. epoxy fiberglass. The properties of Sitka spruce, the most common tonewood, were used as a benchmark. The Young’s modulus to density ratio found in Sitka spruce is relatively high, making its properties ideal for soundboard applications. Both Young’s modulus and density were necessary to calculate the acoustic constant of each material that was tested. The samples were subject to the impact of …


Preparation Of A Polylactic Acid With Hydroxyapatite Reinforcement Composite, Odessa N. Quezon 2013 California Polytechnic State University - San Luis Obispo

Preparation Of A Polylactic Acid With Hydroxyapatite Reinforcement Composite, Odessa N. Quezon

Materials Engineering

Biodegradable polymers are a prime material choice for temporary biomedical devices due to its ability to degrade into non-toxic products for their use in vivo. However, polylactic acid (PLA) by itself lacks the sufficient strength and stiffness to permit their use as its properties begin to decrease as the polymer degrades. To improve the polymer’s mechanical properties, hydroxyapatite (HA) will be added to the PLA solution to act as reinforcement. The chemical property, glass transition temperature of a polymer, also plays a key role in the mechanical properties of the polymer. PLA’s glass temperature is 130⁰F. A polymer that …


Design And Construction Of A Simulated Evaporative Heat Exchanger For Testing The Mitigation Effects Of Pipe Coatings On Mineral Scale Deposition, Taylor J. Anderson 2013 California Polytechnic State University - San Luis Obispo

Design And Construction Of A Simulated Evaporative Heat Exchanger For Testing The Mitigation Effects Of Pipe Coatings On Mineral Scale Deposition, Taylor J. Anderson

Materials Engineering

The thermal efficiency of evaporative heat exchangers is diminishing due to mineral scale buildup on heat exchanger surfaces. A simulated evaporative heat exchanger was designed and constructed for testing the mitigation effects of polymer coatings on mineral scale deposition rates. The heat exchanger was designed to cool hot mud at 200°F using a cooling water supply with a calcium concentration of 1000 ppm. The system was constructed using 1.5-inch diameter polypropylene piping, a DIG Corporation drip irrigation system, a TotalPond 530 GPH pond pump, an Omega CSI32K miniature benchtop controller, Omega FWH321-020 high temperature heater tape, and fifteen copper pipe …


Comparison Of Polyurethane And Polysiloxane Coating Systems In Marine Environments, Jake Jarman, Jessica Salvatin 2013 Cal Poly, San Luis Obispo

Comparison Of Polyurethane And Polysiloxane Coating Systems In Marine Environments, Jake Jarman, Jessica Salvatin

Materials Engineering

This project investigates the performance benefits of polysiloxane and polyurethane coating systems for corrosion protection in marine environments. PPG Industries Amercoat 450H and International Paint Interthane 990HS were the polyurethane topcoats tested. PPG Industries Ameron PSX 700 (New Blend) and International Paint Interfine 878 were the polysiloxane topcoats tested. Each coating was sprayed onto carbon steel panels that were prepared through hand blasting with glass beads. Scribed and unscribed panels were tested in a salt fog chamber for 1,200 hours according to ASTM Standard B0117-11 and in a UV/Humidifier for 1,650 hours according to ASTM Standard D4587-11. Panels were tested …


Lunalight - Bringing Light To The Expanding World, Gabriela M. Igel, Daniel J. Patrick, Kimberley M. Smith 2013 California Polytechnic State University - San Luis Obispo

Lunalight - Bringing Light To The Expanding World, Gabriela M. Igel, Daniel J. Patrick, Kimberley M. Smith

Materials Engineering

The LunaLight, a solar rechargeable light and cell phone charger, addresses the lack of access to electricity faced by 1.4 billion of the world’s population (International Finance Corporation). The LunaTech team has developed a product that is bright, simple, compact, versatile and competitive with existing products. Through a partnership with the non-profit organization One Million Lights, LunaTech has improved a previous team’s design to address user feedback, concerns of durability, and manufacturability.

The LunaLight design includes a 5 component plastic housing held together by 4 screws, a surface mounted PCB, a lithium-ion (Li-Ion) battery, one high-brightness LED, a solar panel, …


The Fabrication & Characterization Of An Electrokinetic Microfluidic Pump From Su-8, A Negative Epoxy-Based Photoresist, Nash Anderson 2013 California Polytechnic State University, San Luis Obispo

The Fabrication & Characterization Of An Electrokinetic Microfluidic Pump From Su-8, A Negative Epoxy-Based Photoresist, Nash Anderson

Master's Theses

Microfluidics refers to manipulation, precise control, and behavior of fluids at the micro and nanoliter scales. It has entered the realm of science as a way to precisely measure or mix small amounts of fluid to perform highly controlled reactions. Glass and polydimethylsiloxane (PDMS) are common materials used to create microfluidic devices; however, glass is difficult to process and PDMS is relatively hydrophobic. In this study, SU-8, an epoxy based (negative) photoresist was used to create various electrokinetic microfluidic chips. SU-8 is commonly used in microelectromechanical design. Spin coating of various SU-8 formulations allows for 1 μm to 100 μm …


Surfactant Formulations For Water-Based Processing Of A Polythiophene Derivative, Cameron Dean Danesh 2013 California Polytechnic State University, San Luis Obispo

Surfactant Formulations For Water-Based Processing Of A Polythiophene Derivative, Cameron Dean Danesh

Master's Theses

Conjugated polymers are semiconducting materials that are currently being researched for numerous applications from chemical and biological sensors to electronic devices, including photovoltaics and transistors. Much of the novel research on conjugated polymers is performed in academic settings, where scientists are working to prepare conjugated polymers for commercially viable applications. By offering numerous advantages, inherent in macromolecular materials, conjugated polymers may hold the key to cheap and environmentally friendly manufacturing of future electronic devices. Mechanical flexibility, and solvent-based coating processes are two commonly cited advantages. Transitions in the backbone conformation of polythiophenes (PT) in organic solvents have been widely observed …


Shelf Life Study Of Electrospun Plga Copolymers, Sean Youra, Nick Hudson 2013 California Polytechnic State University, San Luis Obispo

Shelf Life Study Of Electrospun Plga Copolymers, Sean Youra, Nick Hudson

Biomedical Engineering

Poly(lactic-co-glycolic acid) (PLGA) is one of the most commonly used copolymers for electrospinning in tissue engineering applications. However, most research has not focused on the copolymer itself in regards to how long it can be used effectively and if varying the concentrations of polylactic acid (PLA) and polyglycolic acid (PGA) affect the resulting properties. Electrospinning is the method we use to create the three-dimensional constructs, or “scaffolds”, for the blood vessel mimic (BVM) in the tissue engineering lab. The aim of our project was to investigate if the morphology and mechanical properties of the scaffolds changed over time when they …


Femtosecond Laser Patterned Templates And Imprinted Polymer Structures, Deepak Rajput 2013 University of Tennessee, Knoxville

Femtosecond Laser Patterned Templates And Imprinted Polymer Structures, Deepak Rajput

Doctoral Dissertations

Femtosecond laser machining is a direct-write lithography technique by which user-defined patterns are efficiently and rapidly generated at the surface or within the bulk of transparent materials. When femtosecond laser machining is performed with tightly focused amplified pulses in single-pulse mode, transparent substrates like fused silica can be surface patterned with high aspect ratio (>10:1) and deep (>10 μm) nanoholes. The main objective behind this dissertation is to develop single-pulse amplified femtosecond laser machining into a novel technique for the production of fused silica templates with user-defined patterns made of high aspect ratio nanoholes. The size of the …


Design And Fundamental Understanding Of Minimum Quantity Lubrication (Mql) Assisted Grinding Using Advanced Nanolubricants, Parash Kalita 2013 University of Arkansas, Fayetteville

Design And Fundamental Understanding Of Minimum Quantity Lubrication (Mql) Assisted Grinding Using Advanced Nanolubricants, Parash Kalita

Graduate Theses and Dissertations

Abrasive grinding is widely used across manufacturing industry for finishing parts and components requiring smooth superficial textures and precise dimensional tolerances and accuracy. Unlike any other machining operations, the complex thermo-mechanical processes during grinding produce excessive friction-induced energy consumption, heat, and intense contact seizures. Lubrication and cooling from grinding fluids is crucial in minimizing the deleterious effects of friction and heat to maximize the output part quality and process efficiency. The conventional flood grinding approach of an uneconomical application of large quantities of chemically active fluids has been found ineffective to provide sufficient lubrication and produces waste streams and pollutants …


Applied Analysis Of Ionic Polymer Metal-Composite Actuators, Siul Ruiz, Benjamin Mead, Woosoon Yim 2013 University of Nevada, Las Vegas

Applied Analysis Of Ionic Polymer Metal-Composite Actuators, Siul Ruiz, Benjamin Mead, Woosoon Yim

College of Engineering: Graduate Celebration Programs

  • IPMC is a type of smart material called an electroactive polymer
  • Consists of an ionic polymer such as Nafion or Flemion and a conducive metal such as platinum or gold
  • COMSOL multi-physics simulations accurately model the experimental displacement results
  • Optimization performed using the multi-physics model to find the maximum deflection, force, and twisting
  • Using the closed loop control system accurate IPMC tip location can be achieved
  • This control system has been extended to function using a computer mouse as an input


Sol-Gel Derived Biodegradable And Bioactive Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering, Bedilu A. Allo 2013 The University of Western Ontario

Sol-Gel Derived Biodegradable And Bioactive Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering, Bedilu A. Allo

Electronic Thesis and Dissertation Repository

Treatments of bone injuries and defects have been largely centered on replacing the lost bone with tissues of allogeneic or xenogeneic sources as well as synthetic bone substitutes, which in all lead to limited degree of structural and functional recovery. As a result, tissue engineering has emerged as a viable technology to regenerate the structures and therefore recover the functions of bone tissue rather than replacement alone. Hence, the current strategies of bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix (ECM) as templates onto which cells attach, multiply, migrate and function.

In this …


Effect Of Ph On The Synthesis Of Cuo Nanosheets By Quick Precipitation Method, mahdi shahmiri 2013 University Putra Malaysia

Effect Of Ph On The Synthesis Of Cuo Nanosheets By Quick Precipitation Method, Mahdi Shahmiri

mahdi shahmiri

In this paper, copper oxide nanosheets were successfully fabricated in polyvinylpyrrolidone (PVP) via a quick precipitation method. The synthesized CuO nanostructures were characterized by X-ray diffraction (XRD), UV-vis spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy, energy dispersive analysis of X-ray, and Fourier transform infrared (FT-IR) spectroscopy. The effect of pH on the final product was investigated. The results show that a higher volume ratio of NaOH results in well-defined CuO nanosheets. XRD results confirmed the formation of pure CuO with a monoclinic structure at higher pH, whereas gerhardtite was formed at lower pH. TEM results indicate that …


Carbon Nitride And Conjugated Polymer Composite Materials, Josh Byers 2013 The University of Western Ontario

Carbon Nitride And Conjugated Polymer Composite Materials, Josh Byers

Electronic Thesis and Dissertation Repository

The semiconductor and photovoltaic properties of carbon nitride (CNx) thin films prepared using a reactive magnetron sputtering technique were investigated both individually and as composites with the organic conjugated polymers polybithiophene (PBT) and poly(3-hextlthiophene) (P3HT). At low nitrogen content, the film structure was dominated by graphitic sp2 percolation networks, whereas at higher nitrogen contents CNx films started to demonstrate semiconductor properties, as evidenced by the occurrence of photoconductivity and the development of a space charge region. When CNx was deposited onto a PBT substrate, it was found to function as an acceptor material improving the photocurrent generation both in …


Study Of An Alternative Process For Oxidizing Vapor Grown Carbon Nanofibers Using Electron Beam Accelerators, Maria Cecília Evora, Donald A. Klosterman, Khalid Lafdi, Lingchuan Li, L.G.A. Silva 2013 Instituto de Estudos Avançados

Study Of An Alternative Process For Oxidizing Vapor Grown Carbon Nanofibers Using Electron Beam Accelerators, Maria Cecília Evora, Donald A. Klosterman, Khalid Lafdi, Lingchuan Li, L.G.A. Silva

Chemical and Materials Engineering Faculty Publications

The use of a high-energy electron beam was explored in this study as an alternative technique for oxidizing vapor grown carbon nanofiber surfaces. The radiation exposures were carried out at three different electron beam facilities with beam energies of 1.5, 3.0 and 4.5 MeV and radiation doses ranging from 1000 to 3500 kGy. XPS analysis showed that oxygen was readily incorporated on the surface: the ratio O1s/C1s increased approximately by a factor of 4 when the carbon nanofibers were irradiated at 3500 kGy. The oxidized nanofibers exhibited better dispersion in a water/methanol solution (50% v/v) than as-received nanofibers. Raman spectroscopy …


High-Stress Shear-Induced Crystallization In Isotactic Polypropylene And Propylene/Ethylene Random Copolymers, Zhe Ma, Lucia Fernandez-Ballester, Dario Cavallo, Tim Gough, Gerrit W. M. Peters 2013 Eindhoven University of Technology

High-Stress Shear-Induced Crystallization In Isotactic Polypropylene And Propylene/Ethylene Random Copolymers, Zhe Ma, Lucia Fernandez-Ballester, Dario Cavallo, Tim Gough, Gerrit W. M. Peters

Department of Mechanical and Materials Engineering: Faculty Publications

Crystallization of an isotactic polypropylene (iPP) homopolymer and two propylene/ethylene random copolymers (RACO), induced by high-stress shear, was studied using in situ synchrotron wide-angle X-ray diffraction (WAXD) at 137 °C. The “depth sectioning” method (Fernandez-Ballester, Journal of Rheology 53:5 (2009), pp. 1229−1254) was applied in order to isolate the contributions of different layers in the stress gradient direction and to relate specific structural evolution to the corresponding local stress. This approach gives quantitative results in terms of the specific length of fibrillar nuclei as a function of the applied stress. As expected, crystallization becomes faster with increasing stress—from the inner …


Bacterial Growth On Metal And Non-Metal Surfaces In A Static Bioreactor, Rolan Yuk Loong Liong 2013 California Polytechnic State University, San Luis Obispo

Bacterial Growth On Metal And Non-Metal Surfaces In A Static Bioreactor, Rolan Yuk Loong Liong

Master's Theses

Research was conducted to observe bacterial growth on the surface of metals in a static bioreactor. Metal and non-metal samples were subjected to bacterial exposure (1 day and 9 days). The metal samples were surface treated prior to bacterial exposure. The microstructures of the surface treated samples were analyzed by optical microscopy. After exposure, the microstructures of the samples were analyzed by scanning electron microscopy (SEM). The analysis suggested that microbial attachment on the surface was related to the underlying microstructure of steel. The preferential attachment of microbes could potentially be influenced by cathodic and anodic regions created by the …


Bulk Heterojunction Photodiode: To Detect The Whole Visible Spectrum, Shahino Mah Abdullah 2013 Low Dimensional Material Research Centre, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia

Bulk Heterojunction Photodiode: To Detect The Whole Visible Spectrum, Shahino Mah Abdullah

Shahino Mah Abdullah

In this paper, we report an organic bulk heterojunction photo-sensor that has been fabricated by using a composite of a polymer material poly(3-hexylthiophene-2,5-diyl) (P3HT) and a dye material vanadyl-phthalocyanine (VOPcPhO). The UV–Vis spectrum shows that this composite exhibits a broad absorption over the whole visible range. The photoluminescence (PL) spectra of P3HT and VOPcPhO blend have been studied to optimize the ratio of P3HT and VOPcPhO. The photo-sensitivity has been investigated under different applied voltages in reverse direction. The photoconductivity sensitivity value has been calculated as 5.65 × 102 Sm/W. The photo-responsivity of the sensor has been investigated under 100 …


Material Characterization And The Effects Of Moisture And Drying On Injection Molded Torlon 5030, Michael R. Di Re 2013 Graduate Research Assistant

Material Characterization And The Effects Of Moisture And Drying On Injection Molded Torlon 5030, Michael R. Di Re

Master's Theses

The effects of water absorption and drying were studied on injection molded Torlon 5030, a high performance thermoplastic fabricated by Solvay Specialty Polymers. Torlon 5030 contains 30% by weight glass fibers in a polyamide-imide base resin. The objective behind this work was to test and better define relevant properties for industrial applications using this material. While the material design guide offers information on many mechanical properties including tensile, fatigue, and creep data; there is little to no publicly published data on the effects of water absorption and any subsequent drying of Torlon 5030. Blistering was also studied. With exposure to …


Digital Commons powered by bepress