Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

1,261 Full-Text Articles 1,862 Authors 494,090 Downloads 78 Institutions

All Articles in Other Materials Science and Engineering

Faceted Search

1,261 full-text articles. Page 3 of 39.

Characterization And Modeling Of H- Primary Stripper Foils For The Spallation Neutron Source, Leo Vernon Saturday III 2022 University of Tennessee, Knoxville

Characterization And Modeling Of H- Primary Stripper Foils For The Spallation Neutron Source, Leo Vernon Saturday Iii

Doctoral Dissertations

The Spallation Neutron Source (SNS) is currently preparing for a Proton Power Upgrade project that will increase the operating power of the beamline. Due to this increase in power, a major concern is whether the current stripper foils will be able to withstand the higher power beam. Here, we analyze the current nanocrystalline diamond as well as microcrystalline diamond stripper foils in order to assess their ability to withstand the higher power beamline. In this work we assess the samples’ room temperature thermal conductivity, as well as other material constants, develop a method for in situ analysis of stripper foil …


Additive Manufacturing Of Variable Contrast Computed Tomography Anatomical Phantoms Using A Single Feedstock In Fused Filament Fabrication, Cory J. Darling 2022 University of New Orleans

Additive Manufacturing Of Variable Contrast Computed Tomography Anatomical Phantoms Using A Single Feedstock In Fused Filament Fabrication, Cory J. Darling

University of New Orleans Theses and Dissertations

Anatomical phantoms used in biomedical education and training benefit greatly from Fused filament fabrication’s (FFF) ability to rapidly produce complex and unique models. Current materials and methods used in FFF have limited ability to accurately produce phantoms that can mimic the radiological properties of multiple biological tissues. This research demonstrates that the CT contrast of FFF produced models can be modified by varying the concentration of bismuth oxide in acrylonitrile butadiene styrene (ABS) filaments and a tunable CT contrast that mimics the CT contrast ranging from fatty tissue to cortical bone using a single composite filament without introducing artificial image …


Enhancing Stability Of High-Nickel Cathodes For Lithium-Ion Batteries Through Additive Manufacturing Of Cathode Structure, Matthew Sullivan 2022 University of Arkansas, Fayetteville

Enhancing Stability Of High-Nickel Cathodes For Lithium-Ion Batteries Through Additive Manufacturing Of Cathode Structure, Matthew Sullivan

Mechanical Engineering Undergraduate Honors Theses

Lithium-ion batteries (LIBs) are currently the best method to store electrical energy for use in portable electronics and electronic vehicles. New cathode materials for LIBs are consistently studied and researched, but few are as promising and attainable as nickel-rich transition metal oxides such as LiNi1-x-yMnxCoyO2 (NMC). NMC materials exist with many different mass ratios, but higher nickel content materials provide higher energy density. With this increase in capacity comes a sacrifice with cyclability, as high-nickel NMC variants are prone to structure collapse, transition metal dissolution, and cracks due to volume change. In this report, mechanical modification of the electrode by …


Sustainable Composites From Agricultural And Petroleum Waste, Menisha S. Karunarathna 2022 Clemson University

Sustainable Composites From Agricultural And Petroleum Waste, Menisha S. Karunarathna

All Dissertations

Green gas emission has been a pervasive and persistent subject of debate for a prolonged period. The soaring number of industries and vehicle fuel emissions presage a concomitant rise in global CO2 emissions. Global cement production is responsible for 8% of the total CO2 release, yet, the production continues due to the surging demand. Hence, there is an ongoing quest to find alternatives for cement and building materials produced with zero to lower CO2 emissions. The work presented in this dissertation focuses on finding recyclable, zero CO2 gas-producing high sulfur biocomposites materials, which can compete with …


Detection And Identification Of Disturbances By Spectral Analysis Of Structure-Borne Noise During The Production Of A Sealing Seam, Felix Kruppa, Lars Meisenbach, Berend Oberdorfer Dr.-Ing., Bernd Wilke Prof. Dr.-Ing. 2022 Robert Bosch GmbH, Stuttgart, Germany and Dresden University of Technology, Chair of Processing Machines/Processing Technology, Dresden, Germany

Detection And Identification Of Disturbances By Spectral Analysis Of Structure-Borne Noise During The Production Of A Sealing Seam, Felix Kruppa, Lars Meisenbach, Berend Oberdorfer Dr.-Ing., Bernd Wilke Prof. Dr.-Ing.

Journal of Applied Packaging Research

When sealing, disturbances or errors can occur that impair the quality of the sealing seam and, in the worst case, lead to leaks. It is therefore important to identify and eliminate defective packages during production and to minimize the elimination by readjusting machine parameters. The aim of this article is the clear identification of seam quality problems on a vertical forming, filling and sealing machine SVE2520 by evaluating process parameters during the manufacturing process. For this purpose, the structure-borne noise is measured for each seal in order to identify not-usual curves. These not-usual curves are related to different disturbances or …


Detection Of Trace Heavy Metals In Water: Development Of Electrochemical Sensors, Quang Lam, Joel Mututeke 2022 Kennesaw State University

Detection Of Trace Heavy Metals In Water: Development Of Electrochemical Sensors, Quang Lam, Joel Mututeke

Symposium of Student Scholars

The presence of heavy metals in our ecosystem poses significant ecological and physiological consequences. As a result, numerous techniques are developed for the detection of contaminants in aqueous solutions. However, early and trace detection of such contaminants still remains a challenge. Amongst many techniques, electrochemistry driven sensors have shown promise due to their possibility of miniaturization and low-cost. Our research investigates the use of electrically conducting polymer and atomically thin carbon materials as electrodes towards the development of electrochemical sensor. Nanocomposite electrode films have been synthesized and fabricated using in-situ polymerization technique and the relationship between number of cycles of …


Zero-Power Ac Current Sensor, Omar Aragonez 2022 University of New Mexico

Zero-Power Ac Current Sensor, Omar Aragonez

Mechanical Engineering ETDs

In this study, a magnetic piezoelectric cantilever powered AC current and frequency sensor is proposed. This paper covers the configuration of the experimental setup, finite element modeling of the magnetic coupling, and the optimal spatial location of the magnetic proof mass in relation to the wire for smart grid applications. Solid and stranded copper wires of various gauges were used and carried current up to 30A. The magnets act as a proof mass to lower the frequency while also coupling to the magnetic field generated by the current carrying wire. The frequency of the AC current produces a sinusoidal force …


The Tempering Response Of Cpm® 3v Tool Steel Investigated Through Tensile Testing And Microstructural Observations, Stephen A.C. Hanson 2022 Montana Tech of the University of Montana

The Tempering Response Of Cpm® 3v Tool Steel Investigated Through Tensile Testing And Microstructural Observations, Stephen A.C. Hanson

Graduate Theses & Non-Theses

Heat treatment, tensile testing failure analysis, and microstructural evaluation of the Crucible Industries tool steel CPM® 3V was undertaken to investigate CPM® 3V’s tempering response for the following samples: As-Hardened (no tempering); tempered at 450°C, 550°C, 650°C, and 700°C; and As-Received (annealed). CPM® 3V tool steel is manufactured by Crucible Industries using their proprietary Crucible Particle Metallurgy (CPM®) technology. This material was heat-treated at four different tempering temperatures and was evaluated for tensile properties according to ASTM E8. A TMS landmark tensile fixture was used to establish the ultimate tensile strength and the yield strength of the material for the …


Development Of Cost-Effective High-Modulus Asphalt Concrete (Hmac) Mixtures Using Crumb Rubber And Local Construction Materials In Louisiana., Ibrahim A.I.E Elnaml 2022 Louisiana State University and Agricultural and Mechanical College

Development Of Cost-Effective High-Modulus Asphalt Concrete (Hmac) Mixtures Using Crumb Rubber And Local Construction Materials In Louisiana., Ibrahim A.I.E Elnaml

LSU Master's Theses

One of the emerging solutions to enhance the durability of asphalt pavements is the use of a French asphalt mix known as “High-Modulus Asphalt Concrete (HMAC).” This mix uses a hard asphalt binder, high binder content (about 6%), and low air voids content as compared to Superpave mixtures. The key objective of this study was to develop a cost-effective HMAC mixture using crumb rubber and local materials in Louisiana. To achieve this objective, four HMAC mixtures were prepared using two asphalt binders (PG 82-22 and PG 76-22 plus 10% crumb rubber) and two Reclaimed Asphalt Pavement (RAP) contents (20% and …


Implementation Of Multiscale Mechanisms In Finite Element Analysis Of Active Composite Structures, Amany G. Micheal Prof., Yehia Bahei El Din Prof. 2022 The British University in Egypt

Implementation Of Multiscale Mechanisms In Finite Element Analysis Of Active Composite Structures, Amany G. Micheal Prof., Yehia Bahei El Din Prof.

Centre for Advanced Materials

Composite structures reinforced with electrically active filaments are modeled with the finite element method while the underlying thermo-electromechanical coupling phenomena and damage are taken into consideration. At the outset, structural analysis is performed with a general-purpose finite element code and a special material routine, which propagates local phenomena to the overall scale is utilized. The material routine implements an interactive, multiscale analysis, which provides seamless integration of the mechanics at the composite’s micro, macro, and structural length scales. The interface between the multiscale material routine and the finite element code is made through nonmechanical strains caused by damage, and piezo/pyro-electric …


Design And Fabrication Of Nanostructured Electrodes For Complementary Electrochemical And Photoelectrochemical Water Splitting, Kholoud El Sayed Abousalem 2022 The American University in Cairo AUC

Design And Fabrication Of Nanostructured Electrodes For Complementary Electrochemical And Photoelectrochemical Water Splitting, Kholoud El Sayed Abousalem

Theses and Dissertations

Designing highly active, durable, and nonprecious electrodes for overall water splitting is of urgent scientific importance to realize sustainable hydrogen production. Accordingly, the need to search efficient energy production systems is of crucial necessity. In this thesis, two various systems for sustainable hydrogen production have been reported using electrochemical and photoelectrochemical pathways. In the first part of the thesis, electrochemical water splitting involving both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) has been established. To this end, an innovative approach is demonstrated to synthesize flower-like 3D homogenous trimetallic Mn, Ni, Co phosphide catalysts directly on nickel foam via …


Implementation Of Multiscale Mechanisms In Finite Element Analysis Of Active Composite Structures, Amany Micheal, Yehia Bahei-El-Din 2022 The British University in Egypt

Implementation Of Multiscale Mechanisms In Finite Element Analysis Of Active Composite Structures, Amany Micheal, Yehia Bahei-El-Din

Centre for Advanced Materials

Interrogation of composite structures for inherent damage is investigated by implementing a three-tier analysis scheme. The analysis starts at the structure level where a general-purpose Finite Element code ABAQUS is employed to obtain the stress field in the second level of analysis which is the composite laminate. A special material routine is prepared to propagate the local fields to the individual plies and hence to the third level of analysis which is the microstructure modeling of the composite. Through the third level of analysis, interface damage between fiber and matrix is checked implementing a certain failure criteria. The interaction between …


Magnetic Field Penetration Technique To Study Field Shielding Of Multilayered Superconductors, I.H. Senevianthe, Alex Gurevich, Jean R. Delayen, A-M Valente-Feliciano, Kenji Saito (Ed.), Ting Xu (Ed.), Yana Lesage (Ed.), Volker R.W. Schaa (Ed.) 2022 Old Dominion University

Magnetic Field Penetration Technique To Study Field Shielding Of Multilayered Superconductors, I.H. Senevianthe, Alex Gurevich, Jean R. Delayen, A-M Valente-Feliciano, Kenji Saito (Ed.), Ting Xu (Ed.), Yana Lesage (Ed.), Volker R.W. Schaa (Ed.)

Physics Faculty Publications

The SIS structure which consists of alternative thin layers of superconductors and insulators on a bulk niobium has been proposed to shield niobium cavity surface from high magnetic field and hence increase the accelerating gradient. The study of the behavior of multilayer superconductors in an external magnetic field is essential to optimize their SRF performance. In this work we report the development of a simple and efficient technique to measure penetration of magnetic field into bulk, thin film and multilayer superconductors. Experimental setup contains a small superconducting solenoid which can produce a parallel surface magnetic field up to 0.5 T …


Effects Of Additive Manufacturing Techniques On The Magnetocaloric Properties And Chemical Stability Of Lafexcoysi13-X-Y Alloys, Binyam Wodajo 2022 Virginia Commonwealth University

Effects Of Additive Manufacturing Techniques On The Magnetocaloric Properties And Chemical Stability Of Lafexcoysi13-X-Y Alloys, Binyam Wodajo

Theses and Dissertations

Additive manufacturing (AM) is an emerging process to fabricate net shape, intricate, engineering components with minimal material waste; however, traditionally it has been largely applied to structural materials. AM of functional materials, such as magnetic materials, has received much less attention and the field is still in its infancy. To date, AM of magnetocaloric regenerators for magnetic refrigeration (an energy-efficient alternative to the conventional vapor-compression cooling technology), remains a challenge. There are several magnetic refrigerator device designs in existence today that are predicted to be highly energy-efficient, on condition that suitable working materials can be developed. This challenge in manufacturing …


Rational Design Of Metal-Organic Frameworks (Mofs)-Based Functional Materials Towards Better Air Quality, Zan Zhu 2022 Virgnia Commonwealth University

Rational Design Of Metal-Organic Frameworks (Mofs)-Based Functional Materials Towards Better Air Quality, Zan Zhu

Theses and Dissertations

Air pollution is a major threat to environmental safety and public health. Volatile organic compounds (VOCs), particulate matter (PM), and airborne microorganisms are three typical air pollutants. Conventional strategies to prevent and mitigate air pollution have been employed, which, however, are generally passive. For instance, VOC sensing through solid-state devices is a conventional approach, which, however, is not capable of capturing and removing VOCs. On the other hand, air filters and face masks are useful equipment to protect people from inhaling PM and airborne microorganisms. But most commercial filters can only capture them on the surfaces, which may cause secondary …


A Computational Exploration Of The Scandate Cathode Surface, Shankar Miller-Murthy 2022 University of Kentucky

A Computational Exploration Of The Scandate Cathode Surface, Shankar Miller-Murthy

Theses and Dissertations--Chemical and Materials Engineering

The exact surface configuration of scandate cathodes has been a point of contention for the materials community for a long time. Without proper understanding of it and the related structures and emission mechanisms, scandate cathodes remain patchy and unreliable emitters. Thus, density functional theory techniques were applied to various potential surface arrangements and found that there are several low-energy surfaces with low work functions that incorporate a scandium interlayer between tungsten and oxygen or otherwise have a scandium-on-tungsten structure. Furthermore, it was discovered that adding a monolayer of scandium directly to a tungsten surface is surprisingly favorable, thermodynamically. While none …


Modeling, Fabrication, And Characterization Of Rf-Based Passive Wireless Sensors Composed Of Refractory Semiconducting Ceramics For High Temperature Applications, Kavin Sivaneri Varadharajan Idhaiam 2022 West Virginia University

Modeling, Fabrication, And Characterization Of Rf-Based Passive Wireless Sensors Composed Of Refractory Semiconducting Ceramics For High Temperature Applications, Kavin Sivaneri Varadharajan Idhaiam

Graduate Theses, Dissertations, and Problem Reports

Real-time health monitoring of high temperature systems (>500oC) in harsh environments is necessary to prevent catastrophic events caused by structural failures, varying pressure, and chemical reactions. Conventional solid-state temperature sensors such as resistance temperature detectors (RTDs) and thermocouples are restricted by their operating environments, sensor dimensions and often require external power sources for their operation. The current work presents the research and development of RF-based passive wireless sensing technology targeting high temperatures and harsh environmental conditions. Passive wireless devices are generally classified as near-field and far-field devices based on the interrogation distance. Near-field sensors are placed at …


Low-Temperature Hot Corrosion Of Boilers In The Coal-Fired Power Plant, Artem Gavrilev 2022 West Virginia University

Low-Temperature Hot Corrosion Of Boilers In The Coal-Fired Power Plant, Artem Gavrilev

Graduate Theses, Dissertations, and Problem Reports

Hot corrosion of materials has remained a relevant topic since its introduction in the second half of the 20th century as gas turbine engines suffered severe corrosion during operation over seawater. Hot corrosion is observed in a multitude of high temperature components, such as gas turbines, power plants, refineries, fluidized bed combustion systems, pipelines, and industrial waste incinerators.

Hot corrosion experiments in the laboratory have been conducted under constant temperatures of interest, while in the actual working conditions of coal-fired power plants, boiler tubes are cooled down via water cooling from a relatively high fireside temperature, e.g., 1000°C. To investigate …


Crystalline Analysis Of Geomicrobially-Induced Calcium Carbonate Precipitation In Sands Using A Surface Percolation Treatment Technique, Justin Edward Mulloney 2022 University of North Florida

Crystalline Analysis Of Geomicrobially-Induced Calcium Carbonate Precipitation In Sands Using A Surface Percolation Treatment Technique, Justin Edward Mulloney

UNF Graduate Theses and Dissertations

Ottawa 50/70 sand specimens and natural beach sand samples were treated using bio-augmented geomicrobies via a surface percolation technique. Testing was conducted on these specimens to determine how resultant calcium carbonate precipitation changed as a function of temperature, depth from the surface, and in the presence of magnesium. Specifically, x-ray Diffraction (XRD), a Scanning Electron Microscope (SEM), and Energy Dispersive X-ray Spectroscopy (EDS) were used to determine and quantify the presence of calcium carbonate and its associated phase. Results showed a direct relationship between temperature and precipitated calcium carbonate. In addition, as an unintended consequence associated with the treatment, ammonium …


Branched Chain Amino Acid Strain State Monitoring With Raman Spectroscopy And Plasmonic Bowtie Nanoantenna Devices For Early Disease Detection, Caroline A. Campbell 2022 Virginia Commonwealth University

Branched Chain Amino Acid Strain State Monitoring With Raman Spectroscopy And Plasmonic Bowtie Nanoantenna Devices For Early Disease Detection, Caroline A. Campbell

Theses and Dissertations

This work centers on the development and the down-selection of nano-manufactured devices to be used in conjunction with Raman spectroscopy for probing a branched chain amino acid. The nano-manufactured devices integrate plasmonic nanoantennas for the purpose of amplifying molecular fingerprints, which are otherwise difficult to detect, through Surface Enhanced Raman Spectroscopy (SERS). Plasmonic nanostructures can be utilized for a variety of biomedical and biochemical applications to detect the characteristic fingerprint provided by Raman Spectroscopy. The nano-manufactured devices create an electric field that amplifies minute perturbations and raises the signal above background noise. This may provide a deeper understanding of signal …


Digital Commons powered by bepress