Open Access. Powered by Scholars. Published by Universities.®

Systems Engineering and Multidisciplinary Design Optimization Commons

Open Access. Powered by Scholars. Published by Universities.®

779 Full-Text Articles 1,233 Authors 444,572 Downloads 49 Institutions

All Articles in Systems Engineering and Multidisciplinary Design Optimization

Faceted Search

779 full-text articles. Page 3 of 35.

Digital Image Correlation System Design, Verification And Analysis, Tyler Kraft, Matthew J. Riczo, Andrew Chong 2022 The University of Akron

Digital Image Correlation System Design, Verification And Analysis, Tyler Kraft, Matthew J. Riczo, Andrew Chong

Williams Honors College, Honors Research Projects

Two dimensional digital image correlation provides an accurate and effective way to capture strain data on test sections with unusual or oblique geometries. The system requires a camera to record video footage, alignment fixtures and software to convert the footage into strain values. The system works by capturing the video footage of a specific portion of the specimen and comparing the movement of selected pixels. This is all done in the software GOM Correlate and Tracker. This test document outlines the setup, procedure, and validation steps to fulfill this goal. The setup involves a camera, tripod, blue lighting, and laser …


Liquid Engine External Pressurizer (Leep), Emily Armbrust 2022 The University of Akron

Liquid Engine External Pressurizer (Leep), Emily Armbrust

Williams Honors College, Honors Research Projects

The purpose of this project is to take the current liquid rocket engine test stand design and implement an external pressurant instead of utilizing the 2-phase oxidizer vapor to pressurize itself and the fuel. The purpose behind the design is because the team is limited with the current design concerning burn time due to the amount of propellant they can put in the tanks and the pressure it can reach. The initial pressure is currently not held since there is no external input of mass into the tanks, as the propellant is leaving. Adding an external pressurant allow for the …


The Design Of The Payload System Of An Aircraft, Ryan Cooper 2022 The University of Akron

The Design Of The Payload System Of An Aircraft, Ryan Cooper

Williams Honors College, Honors Research Projects

The project group will design and build a system to unload packages for the Zips Aero Design Team's aircraft for the 2021-22 competition year.


Co2 Based Parachute Deployment, Anthony M. S. Settlemier, Nicholas Motter 2022 The University of Akron

Co2 Based Parachute Deployment, Anthony M. S. Settlemier, Nicholas Motter

Williams Honors College, Honors Research Projects

This paper describes the design process of a CO2 based parachute deployment system for the Akronauts Rocket Design team, with particular emphasis on the selection of methodologies of deployment as well as design iteration. The objective was to create a fully mechanical system in order to replace the black powder based systems that were used previously by the team.

Emphasis was put in creating a system that would function well at higher altitudes while also preventing damage to the parachute during deployment. This system emphasizes robustness under launch conditions.


Fuel System To Envelope Interface, James Campbell 2022 The University of Akron

Fuel System To Envelope Interface, James Campbell

Williams Honors College, Honors Research Projects

*NOTE THIS PROJECT IS CONFIDENTIAL*

In this project, I will investigate solutions to interfacing a fuel system with a fabric skin section


The State Of The Art Of Information Integration In Space Applications, Zhuming Bi, K. L. Yung, Andrew W.H. Ip., Yuk Ming Tang, Chris W.J. Zhang, Li Da Xu 2022 Old Dominion University

The State Of The Art Of Information Integration In Space Applications, Zhuming Bi, K. L. Yung, Andrew W.H. Ip., Yuk Ming Tang, Chris W.J. Zhang, Li Da Xu

Information Technology & Decision Sciences Faculty Publications

This paper aims to present a comprehensive survey on information integration (II) in space informatics. With an ever-increasing scale and dynamics of complex space systems, II has become essential in dealing with the complexity, changes, dynamics, and uncertainties of space systems. The applications of space II (SII) require addressing some distinctive functional requirements (FRs) of heterogeneity, networking, communication, security, latency, and resilience; while limited works are available to examine recent advances of SII thoroughly. This survey helps to gain the understanding of the state of the art of SII in sense that (1) technical drivers for SII are discussed and …


Kentucky Re-Entry Universal Payload System (Krups): Hypersonic Re-Entry Flight, John Daniel Schmidt 2022 University of Kentucky

Kentucky Re-Entry Universal Payload System (Krups): Hypersonic Re-Entry Flight, John Daniel Schmidt

Theses and Dissertations--Mechanical Engineering

The Kentucky Re-entry Universal Payload System (KRUPS) is a small capsule designed as a technology testbed for re-entry experiments. For its first incarnation, KRUPS has been designed to test Thermal Protection Systems (TPS) and instruments in re-entry flights. Because of the unique environment a vehicle undergoes during re-entry, there is a high-demand for experimental data from re-entry experiments. KRUPS has been developed at the University of Kentucky (UK) over the past seven years to meet this demand. After completing sub-orbital campaigns, the first KRUPS hypersonic re-entry mission was attempted. The mission involved building three 11-inch diameter capsules each outfitted with …


Investigations Of The Low Temperature Combustion Regions And Emissions Characteristics Of Aerospace F24 In A Constant Volume Combustion Chamber And A Common Rail Direct Injection Ci Engine, Richard C. Smith III 2022 Georgia Southern University

Investigations Of The Low Temperature Combustion Regions And Emissions Characteristics Of Aerospace F24 In A Constant Volume Combustion Chamber And A Common Rail Direct Injection Ci Engine, Richard C. Smith Iii

Electronic Theses and Dissertations

A study was conducted to investigate the low temperature combustion (LTC) regions of aerospace F24 and ULSD in the static setting of a CVCC and the dynamic setting of a CRDI research engine. This research is conducted to reduce in-cylinder emissions by understanding and implementing a technique to achieve an extended LTC. Emissions data for this study were collected during the operation of the CRDI research engine with a MKS 2030 FTIR and an AVL Microsoot 483. The parameters researched within the static setting of the CVCC included the determinations of the cool flames and NTC regions within the LTHR …


Cfd And Heat Transfer Analysis Of Rocket Cooling Techniques On An Aerospike Nozzle, Geoffrey Sullivan 2022 Georgia Southern University

Cfd And Heat Transfer Analysis Of Rocket Cooling Techniques On An Aerospike Nozzle, Geoffrey Sullivan

Electronic Theses and Dissertations

In recent years the development of rocket engines has been mainly focused on improving the engine cycle and creating new fuels. Rocket nozzle design has not been changed since the late 1960s. Recent needs for reliable and reusable rockets, as well as advancements in additive manufacturing, have brought new interest into the aerospike nozzle concept. This nozzle is a type of altitude adjusting nozzle that is up to 90% more efficient than bell nozzles at low altitudes and spends up to 30% less fuel. Since the nozzle body is submerged in the hot exhaust gasses it is difficult to keep …


State-Of-The-Art Of Thermal Control Solutions To Establish A Modular, Multi-Orbit Capable Spacecraft Thermal Management System Design Methodology, Robert C. Consolo Jr 2021 Embry-Riddle Aeronautical University

State-Of-The-Art Of Thermal Control Solutions To Establish A Modular, Multi-Orbit Capable Spacecraft Thermal Management System Design Methodology, Robert C. Consolo Jr

Doctoral Dissertations and Master's Theses

Today, the exploration and exploitation of space continues to become a more common occurrence. All types of spacecraft (S/C) utilize various types of thermal management solutions to mitigate the effects of thermal loading from the unforgiving vacuum of space. Without an appropriately designed thermal system, components on-board the S/C can experience failure or malfunction due to fluctuations in temperatures either beyond the designed operational parameters or unstable oscillating temperatures. The purpose of this study is to perform a comprehensive review of technologies available today that are being used for thermal management onboard S/C in addition to investigating the means to …


Lupa: An Excursion Vehicle For The Moons Of Mars, Shannon Kavanagh, Bo Lewis, Alex Odinamba, Joshua Mulhern 2021 Kennesaw State University

Lupa: An Excursion Vehicle For The Moons Of Mars, Shannon Kavanagh, Bo Lewis, Alex Odinamba, Joshua Mulhern

Senior Design Project For Engineers

Our team has designed a spacecraft and mission for exploring the moons of Mars. The Lithological and Ultraviolet Photometry Assessment (LUPA) excursion vehicle is capable of crew habitation, autonomous rendezvous, and in-vacuum sample collection all in support of a parallel Mars surface mission to be carried out in the year 2040. Our project's key focus areas revolve around orbital mechanics, space vehicle propulsion analysis, scientific exploration, and the management of various interconnected spacecraft subsystems.


Project Scrappie (Clear Constellation), Jacob Bertram, Jacob Britt, Bill Ngo, Mike Diesing 2021 Kennesaw State University

Project Scrappie (Clear Constellation), Jacob Bertram, Jacob Britt, Bill Ngo, Mike Diesing

Senior Design Project For Engineers

Clear Constellation™ is a nationwide competition hosted by Rubicon® to combat the growing problem of space debris in Low Earth Orbit. Project Scrappie is our team’s solution to this problem. Scrappie is an autonomous apparatus will make use of Whipple shield technology to collide with debris at high velocities and effectively destroy the debris throughout selected orbital paths.


Break The Ice Challenge, Peter Karkos, Alex Lewis, Eva Kouyate, Vy Han 2021 California Polytechnic State University, San Luis Obispo

Break The Ice Challenge, Peter Karkos, Alex Lewis, Eva Kouyate, Vy Han

Mechanical Engineering

The report documents and justifies team LEGION’s senior design project, from research and ideation to prototype manufacturing and testing. It begins by providing some background on the project and outlining the mission scenario given by NASA. This is followed by related literature on excavation of icy regolith on the moon, water transportation, lunar environment, and space law. Next, research is performed into existing products, such as patents and various designs from previous related NASA competitions.

After providing the relevant background information, focused objectives are outlined, with a problem statement, boundary sketch, and engineering specifications. The wants & needs of NASA …


Tradespace Exploration Of A Uav Conceptual Design Using Model-Based Systems Engineering, Ayan Srivastava 2021 Clemson University

Tradespace Exploration Of A Uav Conceptual Design Using Model-Based Systems Engineering, Ayan Srivastava

All Theses

The objective of this research is to apply model-based systems engineering approaches to the conceptual design of unmanned aerial vehicles. This is accomplished by evaluating the models of aircraft performance, extracting input and output parameters from the models, creating chains of models, and implementing the models in the MATLAB programming language. By following this process, it is possible to identify the global parameters that remain constant across models, the shared input parameters, the dependencies between models, and the feedback loops with the systems models.

The models are currently implemented in two files using Microsoft MS Excel, one is focused on …


Issue 18: Contributors, Don Flournoy 2021 Ohio University

Issue 18: Contributors, Don Flournoy

Online Journal of Space Communication

List of Issue 18 Contributors


Sunsat Design Competition 2015-2016 First Place Winner – Team Space Transport: Power Satellites Beamed Energy Bootstrapping, Keith Henson, Anna Nesterova 2021 Ohio University

Sunsat Design Competition 2015-2016 First Place Winner – Team Space Transport: Power Satellites Beamed Energy Bootstrapping, Keith Henson, Anna Nesterova

Online Journal of Space Communication

This International SunSat Design Competition first-place winner for 2016 describes a beamed energy transport system that will operate in Space above low earth orbit (LEO) as a way to move power satellite parts into high orbits.

This design, entitled “Beamed Energy Bootstrapping,” makes use of small propulsion power satellites to provide the energy for space-based vehicles using electric arcjets. The proposal lays out a scheme to get the first propulsion power satellite in place without damage as it passes through the orbiting space junk below 2000 km.

Click here to see the video: Space Transport for Power Satellites Beamed Energy …


Sunsat Design Competition 2015-2016 Second Place Winner – Team Pathway To Power : Wireless Power Transfer, Javier Tandazo, Ethan Wong, Curtis Waggoner, John Guggenheim, Alexander Carter 2021 Ohio University

Sunsat Design Competition 2015-2016 Second Place Winner – Team Pathway To Power : Wireless Power Transfer, Javier Tandazo, Ethan Wong, Curtis Waggoner, John Guggenheim, Alexander Carter

Online Journal of Space Communication

Solar Power Satellites (SPS) using Wireless Power Transfer (WPT) to beam renewable energy to consumers on earth face three grand challenges: moving parts, heat dissipation, and radio interference. Solutions to each of these “show stoppers” are presented here. Further, a progressively more-complex pathway is described which starts where we are now and leads step-wise to implementation of large-scale Space Solar Power (SSP).

The first two grand challenges are addressed by a novel SPS design based on a thin-walled cylinder configuration of solar panels. The remaining challenge is tackled through a newly-discovered antenna configuration which allows dramatic reduction in radio/telecom interference …


Sunsat Design Competition 2014-2015 Third Place Winner – Team Martian: Space Solar Power Test Bed, Jeremy Straub, Tristan Plante, Benjamin Kading, Alex Holland, Landon Klein, Jordan Forbord 2021 Ohio University

Sunsat Design Competition 2014-2015 Third Place Winner – Team Martian: Space Solar Power Test Bed, Jeremy Straub, Tristan Plante, Benjamin Kading, Alex Holland, Landon Klein, Jordan Forbord

Online Journal of Space Communication

We propose a four-stage plan to demonstrate the effectiveness and safety of Space Solar Power (SSP) for use on Earth. Our project goal is to achieve Technology Readiness Level (TRL) by means of: 1) a test mission in low Earth orbit using a small spacecraft; 2) that will support a manned mission to Mars; 3) that includes a bent pipe experiment (power supplied from Earth, to a spacecraft and back to Earth), and 4) to complete system deployment.

The primary impediment to SSP implementation is thought to be the acceptance of the system by those on Earth who may be …


Sunsat Design Competition 2014-2015 First Place Winner – Team Cast: Multi-Rotary Joints Sps, Xinbin Hou, Meng Li, Lili Niu, Lu Zhou, Ying Chen, Zhengai Cheng, Haipeng Ji 2021 Ohio University

Sunsat Design Competition 2014-2015 First Place Winner – Team Cast: Multi-Rotary Joints Sps, Xinbin Hou, Meng Li, Lili Niu, Lu Zhou, Ying Chen, Zhengai Cheng, Haipeng Ji

Online Journal of Space Communication

Space Power Satellite (SPS) is a huge spacecraft designed to collect solar energy in space for supplying electric power to the electric grid on the ground. The SPS concept was first proposed by Dr. Peter Glaser in 1968.

Various studies on SPS in various countries have been produced over the past forty years. Today, there are multiple variations on this early concept, both in innovation and in optimization. Because of the huge size, immense mass and high power of these SPS installations, there are many technological difficulties.

Here, a new Multi-Rotary Joints SPS (MR-SPS) concept is proposed. The large solar …


Sunsat Design Competition 2014-2015 Second Place Winner – Team Sunflower: Thermal Power Satellite, Keith Henson, Steve Nixon, Kris Holland, Anna Nesterova 2021 Ohio University

Sunsat Design Competition 2014-2015 Second Place Winner – Team Sunflower: Thermal Power Satellite, Keith Henson, Steve Nixon, Kris Holland, Anna Nesterova

Online Journal of Space Communication

Space-based Solar Power has failed to be competitive on cost in spite of decades of study. A new approach appears to resolve the cost issue, undercutting coal and opening huge markets for low cost solar power from space. There are two parts to the problem. First is the cost of lifting parts to Geosynchronous Earth Orbit (GEO; second is the mass of parts that make up a power satellite.

Our team is proposing a combination that makes use of Skylon to Low Earth Orbit (LEO), and a 15,000 ton payload ground powered electric propulsion from LEO to GEO. This strategy …


Digital Commons powered by bepress