Semi-Infinite Flags And Zastava Spaces, 2023 University of Massachusetts Amherst

#### Semi-Infinite Flags And Zastava Spaces, Andreas Hayash

*Doctoral Dissertations*

ABSTRACT SEMI-INFINITE FLAGS AND ZASTAVA SPACES SEPTEMBER 2023 ANDREAS HAYASH, B.A., HAMPSHIRE COLLEGE M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Ph.D, UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Ivan Mirković We give an interpretation of Dennis Gaitsgory’s semi-infinite intersection cohomol- ogy sheaf associated to a semisimple simply-connected algebraic group in terms of finite-dimensional geometry. Specifically, we construct machinery to build factoriza- tion spaces over the Ran space from factorization spaces over the configuration space, and show that under this procedure the compactified Zastava space is sent to the support of the semi-infinite intersection cohomology sheaf in the Beilinson-Drinfeld Grassmannian. We also construct …

Fuglede's Conjecture In Some Finite Abelian Groups, 2023 The Graduate Center, City University of New York

#### Fuglede's Conjecture In Some Finite Abelian Groups, Thomas Fallon

*Dissertations, Theses, and Capstone Projects*

This dissertation thoroughly examines Fuglede's Conjecture within some discrete settings, shedding light on its intricate details. Fuglede's Conjecture establishes a profound connection between the geometric property of being a tiling set and the analytical attribute of being a spectral set. By exploring the conjecture on various discrete settings, this thesis delves into the implications and ramifications of the conjecture, unraveling its implications within the field.

On The Spectrum Of Quaquaversal Operators, 2023 The Graduate Center, City University of New York

#### On The Spectrum Of Quaquaversal Operators, Josiah Sugarman

*Dissertations, Theses, and Capstone Projects*

In 1998 Charles Radin and John Conway introduced the Quaquaversal Tiling. A three dimensional hierarchical tiling with the property that the orientations of its tiles approach a uniform distribution faster than what is possible for hierarchical tilings in two dimensions. The distribution of orientations is controlled by the spectrum of a certain Hecke operator, which we refer to as the Quaquaversal Operator. For example, by showing that the largest eigenvalue has multiplicity equal to one, Charles Radin and John Conway showed that the orientations of this tiling approach a uniform distribution. In 2008, Bourgain and Gamburd showed that this operator …

Understanding The Beauty Of Mathematics By Composing Claude Debussy's Syrinx Into Mathematical Equations, 2023 Seattle Pacific University

#### Understanding The Beauty Of Mathematics By Composing Claude Debussy's Syrinx Into Mathematical Equations, Mackenzi Mehlberg

*Honors Projects*

Mesmerizing melodies and narrative storytelling are exemplified in Claude Debussy's Syrinx. As a well-known piece of solo flute literature, it is considered beautiful. Conversely, mathematics is seen as logical, and by implication not beautiful. Using Fourier Analysis, Syrinx can be represented in a different context: a series of mathematical equations. These mathematical equations can then be played as a different interpretation of Syrinx. With this interpretation, we see that mathematics is beautiful.

(R2028) A Brief Note On Space Time Fractional Order Thermoelastic Response In A Layer, 2023 Shri Lemdeo Patil Mahavidyalaya,Mandhal

#### (R2028) A Brief Note On Space Time Fractional Order Thermoelastic Response In A Layer, Navneet Lamba, Jyoti Verma, Kishor Deshmukh

*Applications and Applied Mathematics: An International Journal (AAM)*

In this study, a one-dimensional layer of a solid is used to investigate the exact analytical solution of the heat conduction equation with space-time fractional order derivatives and to analyze its associated thermoelastic response using a quasi-static approach. The assumed thermoelastic problem was subjected to certain initial and boundary conditions at the initial and final ends of the layer. The memory effects and long-range interaction were discussed with the help of the Caputo-type fractional-order derivative and finite Riesz fractional derivative. Laplace transform and Fourier transform techniques for spatial coordinates were used to investigate the solution of the temperature distribution and …

Analytic Continuation Of Toeplitz Operators And Commuting Families Of C*-Algebras, 2023 Louisiana State University and Agricultural and Mechanical College

#### Analytic Continuation Of Toeplitz Operators And Commuting Families Of C*-Algebras, Khalid Bdarneh

*LSU Doctoral Dissertations*

In this thesis we consider the Toeplitz operators on the weighted Bergman spaces and their analytic continuation. We proved the commutativity of the $C^*-$algebras generated by the analytic continuation of Toeplitz operators with special class of symbols that are invariant under suitable subgroups of $SU(n,1)$, and we showed that commutative $C^*-$algebras with symbols invariant under compact subgroups of $SU(n,1)$ are completely characterized in terms of restriction to multiplicity free representations. Moreover, we extended the restriction principal to the analytic continuation case for suitable maximal abelian subgroups of the universal covering group $\widetilde{SU(n,1)}$, and we obtained the generalized Segal-Bargmann transform, where …

Music: Numbers In Motion, 2023 Università degli Studi di Firenze

#### Music: Numbers In Motion, Graziano Gentili, Luisa Simonutti, Daniele C. Struppa

*Mathematics, Physics, and Computer Science Faculty Articles and Research*

Music develops and appears as we allow numbers to acquire a dynamical aspect and create, through their growth, the various keys that permit the richness of the musical texture. This idea was simply adumbrated in Plato’s work, but its importance to his philosophical worldview cannot be underestimated. In this paper we begin by discussing what is probably the first written record of an attempt to create a good temperament and then follow the Pythagoreans approach, whose problems forced musicians, over the next several centuries up to the Renaissance and early modern times, to come up with many different variations.

Long Increasing Subsequences, 2023 Claremont Colleges

#### Long Increasing Subsequences, Hannah Friedman

*HMC Senior Theses*

In my thesis, I investigate long increasing subsequences of permutations from two angles. Motivated by studying interpretations of the longest increasing subsequence statistic across different representations of permutations, we investigate the relationship between reduced words for permutations and their RSK tableaux in Chapter 3. In Chapter 4, we use permutations with long increasing subsequences to construct a basis for the space of *𝑘*-local functions.

(Si10-068) Performance Analysis Of Cosine Window Function, 2022 Jaypee University of Engineering and Technology

#### (Si10-068) Performance Analysis Of Cosine Window Function, Vikas Misra, Narendra Singh, M. Shukla

*Applications and Applied Mathematics: An International Journal (AAM)*

This paper reviews the mathematical functions called the window functions which are employed in the Finite Impulse Response (FIR) filter design applications as well as spectral analysis for the detection of weak signals. The characteristic properties of the window functions are analyzed and parameters are compared among the known conventional cosine window (CW) functions (Rectangular, Hamming, Hanning, and Blackman) and the variable Kaiser window function. The window function expressed in the time domain can be transformed into the frequency domain by taking the Discrete Fourier Transform (DFT) of the time domain window function. The frequency response of the window function …

Bbt Acoustic Alternative Top Bracing Cadd Data Set-Norev-2022jun28, 2022 East Tennessee State University

#### Bbt Acoustic Alternative Top Bracing Cadd Data Set-Norev-2022jun28, Bill Hemphill

*STEM Guitar Project’s BBT Acoustic Kit*

This electronic document file set consists of an overview presentation (PDF-formatted) file and companion video (MP4) and CADD files (DWG & DXF) for laser cutting the ETSU-developed alternate top bracing designs and marking templates for the STEM Guitar Project’s BBT (OM-sized) standard acoustic guitar kit. The three (3) alternative BBT top bracing designs in this release are

(a) a one-piece base for the standard kit's (Martin-style) bracing,

(b) 277 Ladder-style bracing, and

(c) an X-braced fan-style bracing similar to traditional European or so-called 'classical' acoustic guitars.

The CADD data set for each of the three (3) top bracing designs includes …

Commutative C*-Algebras Generated By Toeplitz Operators On The Fock Space, 2022 Louisiana State University and Agricultural and Mechanical College

#### Commutative C*-Algebras Generated By Toeplitz Operators On The Fock Space, Vishwa Nirmika Dewage

*LSU Doctoral Dissertations*

The Fock space $\mathcal{F}(\mathbb{C}^n)$ is the space of holomorphic functions on $\mathbb{C}^n$ that are square-integrable with respect to the Gaussian measure on $\mathbb{C}^n$. This space plays an essential role in several subfields of analysis and representation theory. In particular, it has for a long time been a model to study Toeplitz operators. Grudsky and Vasilevski showed in 2002 that radial Toeplitz operators on $\mathcal{F}(\mathbb{C})$ generate a commutative $C^*$-algebra $\mathcal{T}^G$, while Esmeral and Maximenko showed that $C^*$-algebra $\mathcal{T}^G$ is isometrically isomorphic to the $C^*$-algebra $C_{b,u}(\mathbb{N}_0,\rho_1)$. In this thesis, we extend the result to $k$-quasi-radial symbols acting on the Fock space $\mathcal{F}(\mathbb{C}^n)$. …

Diederich-Fornæss Index On Boundaries Containing Crescents, 2022 University of Arkansas, Fayetteville

#### Diederich-Fornæss Index On Boundaries Containing Crescents, Jason Demoulpied

*Graduate Theses and Dissertations*

The worm domain developed by Diederich and Fornæss is a classic example of a boundedpseudoconvex domains that fails to satisfy global regularity of the Bergman Projection, due to the set of weakly pseudoconvex points that form an annulus in its boundary. We instead examine a bounded pseudoconvex domain Ω ⊂ C2 whose set of weakly pseudoconvex points form a crescent in its boundary. In 2019, Harrington had shown that these types of domains satisfy global regularity of the Bergman Projection based on the existence of good vector fields. In this thesis we study the Regularized Diederich-Fornæss index of these domains, …

Contributions To The Teaching And Learning Of Fluid Mechanics, 2021 Montclair State University

#### Contributions To The Teaching And Learning Of Fluid Mechanics, Ashwin Vaidya

*Department of Mathematics Facuty Scholarship and Creative Works*

This issue showcases a compilation of papers on fluid mechanics (FM) education, covering different sub topics of the subject. The success of the first volume [1] prompted us to consider another follow-up special issue on the topic, which has also been very successful in garnering an impressive variety of submissions. As a classical branch of science, the beauty and complexity of fluid dynamics cannot be overemphasized. This is an extremely well-studied subject which has now become a significant component of several major scientific disciplines ranging from aerospace engineering, astrophysics, atmospheric science (including climate modeling), biological and biomedical science …

Interpolation And Sampling In Analytic Tent Spaces, 2021 University of Arkansas, Fayetteville

#### Interpolation And Sampling In Analytic Tent Spaces, Caleb Parks

*Graduate Theses and Dissertations*

Introduced by Coifman, Meyer, and Stein, the tent spaces have seen wide applications in harmonic analysis. Their analytic cousins have seen some applications involving the derivatives of Hardy space functions. Moreover, the tent spaces have been a recent focus of research. We introduce the concept of interpolating and sampling sequences for analytic tent spaces analogously to the same concepts for Bergman spaces. We then characterize such sequences in terms of Seip's upper and lower uniform density. We accomplish this by exploiting a kind of Mobius invariance for the tent spaces.

Lecture 05: The Convergence Of Big Data And Extreme Computing, 2021 King Abdullah University of Science and Technology

#### Lecture 05: The Convergence Of Big Data And Extreme Computing, David Keyes

*Mathematical Sciences Spring Lecture Series*

As simulation and analytics enter the exascale era, numerical algorithms, particularly implicit solvers that couple vast numbers of degrees of freedom, must span a widening gap between ambitious applications and austere architectures to support them. We present fifteen universals for researchers in scalable solvers: imperatives from computer architecture that scalable solvers must respect, strategies towards achieving them that are currently well established, and additional strategies currently being developed for an effective and efficient exascale software ecosystem. We consider recent generalizations of what it means to “solve” a computational problem, which suggest that we have often been “oversolving” them at the …

Lecture 10: Preconditioned Iterative Methods For Linear Systems, 2021 Georgia Institute of Technology

#### Lecture 10: Preconditioned Iterative Methods For Linear Systems, Edmond Chow

*Mathematical Sciences Spring Lecture Series*

Iterative methods for the solution of linear systems of equations – such as stationary, semi-iterative, and Krylov subspace methods – are classical methods taught in numerical analysis courses, but adapting these methods to run efficiently at large-scale on high-performance computers is challenging and a constantly evolving topic. Preconditioners – necessary to aid the convergence of iterative methods – come in many forms, from algebraic to physics-based, are regularly being developed for linear systems from different classes of problems, and similarly are evolving with high-performance computers. This lecture will cover the background and some recent developments on iterative methods and preconditioning …

Linear Combinations Of Harmonic Univalent Mappings, 2021 California State University, Stanislaus

#### Linear Combinations Of Harmonic Univalent Mappings, Dennis Nguyen

*Rose-Hulman Undergraduate Mathematics Journal*

Many properties are known about analytic functions, however the class of harmonic functions which are the sum of an analytic function and the conjugate of an analytic function is less understood. We wish to find conditions such that linear combinations of univalent harmonic functions are univalent. We focus on functions whose image is convex in one direction i.e. each line segment in that direction between points in the image is contained in the image. M. Dorff proved sufficient conditions such that the linear combination of univalent harmonic functions will be univalent on the unit disk. The conditions are: the mappings …

Morphology-Dependent Resonances In Two Concentric Spheres With Variable Refractive Index In The Outer Layer: Analytic Solutions, 2021 Old Dominion University

#### Morphology-Dependent Resonances In Two Concentric Spheres With Variable Refractive Index In The Outer Layer: Analytic Solutions, Umaporn Nuntaplook, John A. Adam

*Mathematics & Statistics Faculty Publications*

In many applications constant or piecewise constant refractive index profiles are used to study the scattering of plane electromagnetic waves by a spherical object. When the structured media has variable refractive indices, this is more of a challenge. In this paper, we investigate the morphology dependent resonances for the scattering of electromagnetic waves from two concentric spheres when the outer shell has a variable refractive index. The resonance analysis is applied to the general solutions of the radial Debye potential for both transverse magnetic and transverse electric modes. Finally, the analytic conditions to determine the resonance locations for this system …

Algebraic, Analytic, And Combinatorial Properties Of Power Product Expansions In Two Independent Variables., 2021 West Virginia University

#### Algebraic, Analytic, And Combinatorial Properties Of Power Product Expansions In Two Independent Variables., Mohamed Ammar Elewoday

*Graduate Theses, Dissertations, and Problem Reports*

Let $F(x,y)=I+\hspace{-.3cm}\sum\limits_{\substack{p=1\\m+n=p}}^{\infty}\hspace{-.3cm}A_{m,n}x^my^n$ be a formal power series, where the coefficients $A_{m,n}$ are either all matrices or all scalars. We expand $F(x,y)$ into the formal products $\prod\limits_{\substack{p=1\\m+n=p}}^{\infty}\hspace{-.3cm}(I+G_{m,n}x^m y^n)$, $\prod\limits_{\substack{p=1\\m+n=p}}^{\infty}\hspace{-.3cm}(I-H_{m,n}x^m y^n)^{-1}$, namely the \textit{ power product expansion in two independent variables} and \textit{inverse power product expansion in two independent variables} respectively. By developing new machinery involving the majorizing infinite product, we provide estimates on the domain of absolute convergence of the infinite product via the Taylor series coefficients of $F(x,y)$. This machinery introduces a myriad of "mixed expansions", uncovers various algebraic connections between the $(A_{m,n})$ and the $(G_{m,n})$, and uncovers various algebraic …

The Complex Propagation Of Light Explained Visually: How To Make A Hologram, 2021 Bard College

#### The Complex Propagation Of Light Explained Visually: How To Make A Hologram, Bruno Ray Becher

*Senior Projects Spring 2021*

The complexity of light’s wave nature is shown in the paths that light takes. In this project I will show several useful ways to imagine and predict how light will travel from one place to another. Once light is produced it does not immediately fill a room, instead it undulates through free space as if the space itself was a fluid. Once we understand the way light flows and interacts with its environment not only can we predict and control its shape with a hologram, but also discover clues which give secrets about where the light has been. Telescopes and …