On Axially Rational Regular Functions And Schur Analysis In The Clifford-Appell Setting,
2024
Chapman University
On Axially Rational Regular Functions And Schur Analysis In The Clifford-Appell Setting, Daniel Alpay, Fabrizio Colombo, Antonino De Martino, Kamal Diki, Irene Sabadini
Mathematics, Physics, and Computer Science Faculty Articles and Research
In this paper we start the study of Schur analysis for Cauchy–Fueter regular quaternionic-valued functions, i.e. null solutions of the Cauchy–Fueter operator in . The novelty of the approach developed in this paper is that we consider axially regular functions, i.e. functions spanned by the so-called Clifford-Appell polynomials. This type of functions arises naturally from two well-known extension results in hypercomplex analysis: the Fueter mapping theorem and the generalized Cauchy–Kovalevskaya (GCK) extension. These results allow one to obtain axially regular functions starting from analytic functions of one real or complex variable. Precisely, in the Fueter theorem two operators play a …
Quasistationary Distribution For The Invasion Model On A Complete Bipartite Graph,
2024
University of British Columbia, Vancouver, BC V6T 1Z4, Canada
Quasistationary Distribution For The Invasion Model On A Complete Bipartite Graph, Clayton Allard, Iddo Ben-Ari, Shrikant Chand, Van Hovenga, Edith Lee, Julia Shapiro
Journal of Stochastic Analysis
No abstract provided.
The Basel Problem And Summing Rational Functions Over Integers,
2024
Indian Institute of Science Education and Research, Pune
The Basel Problem And Summing Rational Functions Over Integers, Pranjal Jain
Rose-Hulman Undergraduate Mathematics Journal
We provide a general method to evaluate convergent sums of the form ∑_{k∈Z} R(k) where R is a rational function with complex coefficients. The method is entirely elementary and does not require any calculus beyond some standard limits and convergence criteria. It is inspired by a geometric solution to the famous Basel Problem given by Wästlund (2010), so we begin by demonstrating the method on the Basel Problem to serve as a pilot application. We conclude by applying our ideas to prove Euler’s factorisation for sin x which he originally used to solve the Basel Problem.
A Characterization Of The Operator Entropy In Terms Of An Isometry Property Related To Trace Norms,
2024
Meijo University, Tenpaku, Nagoya 468- 8502, Japan
A Characterization Of The Operator Entropy In Terms Of An Isometry Property Related To Trace Norms, Ryo Inayoshi
Journal of Stochastic Analysis
No abstract provided.
Two Non–*–Isomorphic *–Lie Algebra Structures On Sl(2,R) And Their Physical Origins,
2024
Università di Roma Tor Vergata, Roma I-00133, Italy
Two Non–*–Isomorphic *–Lie Algebra Structures On Sl(2,R) And Their Physical Origins, Luigi Accardi, Irina Ya. ArefʹEva, Yungang Lu, Igorʹ VasilʹEvich Volovich
Journal of Stochastic Analysis
No abstract provided.
Covariant Anyons Via Mackey Machinery,
2024
Army Research Laboratory Adelphi, MD, 21005-5069, USA
Covariant Anyons Via Mackey Machinery, Radhakrishnan Balu
Journal of Stochastic Analysis
No abstract provided.
Nonlinear Filtering Of Classical And Quantum Spin Systems,
2024
National Academies/Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433 USA
Nonlinear Filtering Of Classical And Quantum Spin Systems, Sivaguru S. Sritharan, Saba Mudaliar
Journal of Stochastic Analysis
No abstract provided.
Machine Learning Approaches For Cyberbullying Detection,
2024
University of Central Florida
Machine Learning Approaches For Cyberbullying Detection, Roland Fiagbe
Data Science and Data Mining
Cyberbullying refers to the act of bullying using electronic means and the internet. In recent years, this act has been identifed to be a major problem among young people and even adults. It can negatively impact one’s emotions and lead to adverse outcomes like depression, anxiety, harassment, and suicide, among others. This has led to the need to employ machine learning techniques to automatically detect cyberbullying and prevent them on various social media platforms. In this study, we want to analyze the combination of some Natural Language Processing (NLP) algorithms (such as Bag-of-Words and TFIDF) with some popular machine learning …
Multiscale Modelling Of Brain Networks And The Analysis Of Dynamic Processes In Neurodegenerative Disorders,
2024
Wilfrid Laurier University
Multiscale Modelling Of Brain Networks And The Analysis Of Dynamic Processes In Neurodegenerative Disorders, Hina Shaheen
Theses and Dissertations (Comprehensive)
The complex nature of the human brain, with its intricate organic structure and multiscale spatio-temporal characteristics ranging from synapses to the entire brain, presents a major obstacle in brain modelling. Capturing this complexity poses a significant challenge for researchers. The complex interplay of coupled multiphysics and biochemical activities within this intricate system shapes the brain's capacity, functioning within a structure-function relationship that necessitates a specific mathematical framework. Advanced mathematical modelling approaches that incorporate the coupling of brain networks and the analysis of dynamic processes are essential for advancing therapeutic strategies aimed at treating neurodegenerative diseases (NDDs), which afflict millions of …
Investigating Bremsstrahlung Radiation In Tungsten Targets: A Geant4 Simulation Study,
2023
National University of Uzbekistan, Tashkent, Uzbekistan
Investigating Bremsstrahlung Radiation In Tungsten Targets: A Geant4 Simulation Study, Sindor Ashurov, Satimboy Palvanov, Abror Tuymuradov, Dilmurod Tuymurodov
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
Bremsstrahlung radiation, a pivotal phenomenon in high-energy physics, presents numerous applications and implications in both theoretical studies and practical scenarios. This article explores the Bremsstrahlung radiation of electrons in tungsten (W) targets of varying widths subjected to different energy beams using GEANT4 simulations. By systematically altering the target widths and electron beam energies, we assess the corresponding effects on radiation yield and spectrum. The findings contribute to a deeper understanding of Bremsstrahlung processes in high-$Z$ materials and offer valuable insights for applications ranging from radiation therapy to materials analysis.
Translation-Invariant Gibbs Measures For Potts Model With Competing Interactions With A Countable Set Of Spin Values On Cayley Tree,
2023
V.I.Romanovskii Institute of Mathematics, Tashkent, Uzbekistan
Translation-Invariant Gibbs Measures For Potts Model With Competing Interactions With A Countable Set Of Spin Values On Cayley Tree, Zarinabonu Mustafoyeva
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
In the present paper we consider of an infinite system of functional equations for the Potts model with competing interactions and countable spin values Φ = {0, 1, ..., } on a Cayley tree of order k. We study translation-invariant Gibbs measures that gives the description of the solutions of some infinite system of equations. For any k ≥ 1 and any fixed probability measure ν we show that the set of translation-invariant splitting Gibbs measures contains one and two points for odd k and even k, respectively, independently on parameters of the Potts model with a countable …
An Analogue Of Hartogs Lemma For Separately Harmonic Functions With Variable Radius Of Harmonicity,
2023
National University of Uzbekistan, Tashkent, Uzbekistan;
Institute of Mathematics named after V.I.Romanovsky, Tashkent, Uzbekistan
An Analogue Of Hartogs Lemma For Separately Harmonic Functions With Variable Radius Of Harmonicity, Sevdiyor Imomkulov, Sultanbay Abdikadirov
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
In this note we prove that if a function u(x,y) is separately harmonic in a domain D × Vr = D × {y∈ℝ2:|y|<r, r>1} ⊂ ℝn × ℝ2 and for each fixed point x0 ∈ D the function u(x0,y) of variable y continues harmonically into the great circle {y∈ℝ2:|y|<R(x0), R(x0)>r}, then it continues harmonically into a domain {(x …
Holomorphic Motion Of Julia Sets Of Polynomial-Like Maps, And Continuity Of Compact Sets And Their Green Functions,
2023
National University of Uzbekistan, Tashkent, Uzbekistan
Holomorphic Motion Of Julia Sets Of Polynomial-Like Maps, And Continuity Of Compact Sets And Their Green Functions, Bazarbaev Sardor, Sobir Boymurodov
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
In this paper, we study holomorphic motion of Julia sets of polynomial-like maps. In particular, we prove that in the stable family of polynomial-like maps if all the continuos functions move continuously by parameter then the Julia sets move holomorphically. Moreover, we also study the relation between continuity of regular compact sets and their Green functions.
Complex Dimensions Of 100 Different Sierpinski Carpet Modifications,
2023
California Polytechnic State University, San Luis Obispo
Complex Dimensions Of 100 Different Sierpinski Carpet Modifications, Gregory Parker Leathrum
Master's Theses
We used Dr. M. L. Lapidus's Fractal Zeta Functions to analyze the complex fractal dimensions of 100 different modifications of the Sierpinski Carpet fractal construction. We will showcase the theorems that made calculations easier, as well as Desmos tools that helped in classifying the different fractals and computing their complex dimensions. We will also showcase all 100 of the Sierpinski Carpet modifications and their complex dimensions.
Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics,
2023
Clemson University
Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost
All Dissertations
In confocal single-molecule FRET experiments, the joint distribution of FRET efficiency and donor lifetime distribution can reveal underlying molecular conformational dynamics via deviation from their theoretical Forster relationship. This shift is referred to as a dynamic shift. In this study, we investigate the influence of the free energy landscape in protein conformational dynamics on the dynamic shift by simulation of the associated continuum reaction coordinate Langevin dynamics, yielding a deeper understanding of the dynamic and structural information in the joint FRET efficiency and donor lifetime distribution. We develop novel Langevin models for the dye linker dynamics, including rotational dynamics, based …
(R2054) Convergence Of Lagrange-Hermite Interpolation Using Non-Uniform Nodes On The Unit Circle,
2023
University of Lucknow
(R2054) Convergence Of Lagrange-Hermite Interpolation Using Non-Uniform Nodes On The Unit Circle, Swarnima Bahadur, Sameera Iqram, Varun .
Applications and Applied Mathematics: An International Journal (AAM)
In this research article, we brought into consideration the set of non-uniformly distributed nodes on the unit circle to investigate a Lagrange-Hermite interpolation problem. These nodes are obtained by projecting vertically the zeros of Jacobi polynomial onto the unit circle along with the boundary points of the unit circle on the real line. Explicitly representing the interpolatory polynomial as well as establishment of convergence theorem are the key highlights of this manuscript. The result proved are of interest to approximation theory.
Understanding Impact Of Educational Awareness And Vaccines As Optimal Control Mechanisms For Changing Human Behavior In Disease Epidemics,
2023
George Mason University
Understanding Impact Of Educational Awareness And Vaccines As Optimal Control Mechanisms For Changing Human Behavior In Disease Epidemics, Manal Badgaish, Dr. Padmanabhan Seshaiyer
Annual Symposium on Biomathematics and Ecology Education and Research
No abstract provided.
The Effects Of Persistent Post-Concussion Syndrome,
2023
Illinois State University
The Effects Of Persistent Post-Concussion Syndrome, Jackson Flemming, Olivia Schleifer, Megan Powell
Annual Symposium on Biomathematics and Ecology Education and Research
No abstract provided.
On A Stationary Random Knot,
2023
Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
On A Stationary Random Knot, Andrey A. Dorogovtsev
Journal of Stochastic Analysis
No abstract provided.
The General Theory Of Superoscillations And Supershifts In Several Variables,
2023
Politecnico di Milano
The General Theory Of Superoscillations And Supershifts In Several Variables, Fabrizio Colombo, Stefano Pinton, Irene Sabadini, Daniele C. Struppa
Mathematics, Physics, and Computer Science Faculty Articles and Research
In this paper we describe a general method to generate superoscillatory functions of several variables starting from a superoscillating sequence of one variable. Our results are based on the study of suitable infinite order differential operators acting on holomorphic functions with growth conditions of exponential type. Additional constraints are required when dealing with infinite order differential operators whose symbol is a function that is holomorphic in some open set, but not necessarily entire. The results proved for superoscillating sequences in several variables are extended to sequences of supershifts in several variables.
