The Italian Domatic Number On Varying Graph Families,
2023
Olivet Nazarene University
The Italian Domatic Number On Varying Graph Families, Keith Gallegos
Scholar Week 2016 - present
See file download option for presentation.
.pdf of abstract, which contains mathematical formulas, is available as a "Supplemental File" below.
Bounds For The Augmented Zagreb Index,
2023
Qinghai Normal University
Bounds For The Augmented Zagreb Index, Ren Qingcuo, Li Wen, Suonan Renqian, Yang Chenxu
Theory and Applications of Graphs
The augmented Zagreb index (\rm{AZI} for short) of a graph $G$, introduced by Furtula et al. in 2010, is defined as ${\rm AZI}(G)=\sum\limits_{v_iv_j\in E(G)}{\left(\frac{d(v_i)d(v_j)}{d(v_i)+d(v_j)-2}\right)}^3$, where $E(G)$ is the edge set of $G$, and $d(v_i)$ denotes the degree of the vertex $v_i$. In this paper, we give some new bounds on general connected graphs, molecular trees and triangle-free graphs. \\[2mm] {\bf Keywords:} Agumented Zagreb index; molecular trees; Triangle-free graph
New Diagonal Graph Ramsey Numbers Of Unicyclic Graphs,
2023
San Jose State University
New Diagonal Graph Ramsey Numbers Of Unicyclic Graphs, Richard M. Low, Ardak Kapbasov
Theory and Applications of Graphs
Grossman conjectured that $R(G, G) = 2 \cdot |V(G)| - 1$, for all simple connected unicyclic graphs $G$ of odd girth and $|V(G)| \geq 4$. In this note, we prove his conjecture for various classes of $G$ containing a triangle. In addition, new diagonal graph Ramsey numbers are calculated for some classes of simple connected unicyclic graphs of even girth.
Ts-Reconfiguration Of $K$-Path Vertex Covers In Caterpillars For $K \Geq 4$,
2023
VNU University of Science, Hanoi, Vietnam
Ts-Reconfiguration Of $K$-Path Vertex Covers In Caterpillars For $K \Geq 4$, Duc A. Hoang
Theory and Applications of Graphs
A $k$-path vertex cover ($k$-PVC) of a graph $G$ is a vertex subset $I$ such that each path on $k$ vertices in $G$ contains at least one member of $I$. Imagine that a token is placed on each vertex of a $k$-PVC. Given two $k$-PVCs $I, J$ of a graph $G$, the \textsc{$k$-Path Vertex Cover Reconfiguration ($k$-PVCR)} under Token Sliding ($\mathsf{TS}$) problem asks if there is a sequence of $k$-PVCs between $I$ and $J$ where each intermediate member is obtained from its predecessor by sliding a token from some vertex to one of its unoccupied neighbors. This problem is known …
Ramsey Numbers For Connected 2-Colorings Of Complete Graphs,
2023
Western Carolina University
Ramsey Numbers For Connected 2-Colorings Of Complete Graphs, Mark Budden
Theory and Applications of Graphs
In 1978, David Sumner introduced a variation of Ramsey numbers by restricting to $2$-colorings in which the subgraphs spanned by edges in each color are connected. This paper continues the study of connected Ramsey numbers, including the evaluation of several cases of trees versus complete graphs.
Matroid Generalizations Of Some Graph Results,
2023
Louisiana State University and Agricultural and Mechanical College
Matroid Generalizations Of Some Graph Results, Cameron Crenshaw
LSU Doctoral Dissertations
The edges of a graph have natural cyclic orderings. We investigate the matroids for which a similar cyclic ordering of the circuits is possible. A full characterization of the non-binary matroids with this property is given. Evidence of the difficulty of this problem for binary matroids is presented, along with a partial result for binary orderable matroids.
For a graph G, the ratio of |E(G)| to the minimum degree of G has a natural lower bound. For a matroid M that is representable over a finite field, we generalize this to a lower bound on …
Optimal Orientations Of Vertex-Multiplications Of Trees With Diameter 4,
2023
National Institute of Education, Nanyang Technological University of Singapore
Optimal Orientations Of Vertex-Multiplications Of Trees With Diameter 4, Willie Han Wah Wong, Eng Guan Tay
Theory and Applications of Graphs
\noindent Koh and Tay proved a fundamental classification of $G$ vertex-multiplications into three classes $\mathscr{C}_0, \mathscr{C}_1$ and $\mathscr{C}_2$. They also showed that any vertex-multiplication of a tree with diameter at least 3 does not belong to the class $\mathscr{C}_2$. Of interest, $G$ vertex-multiplications are extensions of complete $n$-partite graphs and Gutin characterised complete bipartite graphs with orientation number 3 (or 4 resp.) via an ingenious use of Sperner's theorem. In this paper, we investigate vertex-multiplications of trees with diameter $4$ in $\mathscr{C}_0$ (or $\mathscr{C}_1$) and exhibit its intricate connections with problems in Sperner Theory, thereby extending Gutin's approach. Let $s$ …
The Determining Number And Cost Of 2-Distinguishing Of Select Kneser Graphs,
2023
Hampden-Sydney College
The Determining Number And Cost Of 2-Distinguishing Of Select Kneser Graphs, James E. Garrison
Rose-Hulman Undergraduate Mathematics Journal
A graph $G$ is said to be \emph{d-distinguishable} if there exists a not-necessarily proper coloring with $d$ colors such that only the trivial automorphism preserves the color classes. For a 2-distinguishing labeling, the \emph{ cost of $2$-distinguishing}, denoted $\rho(G),$ is defined as the minimum size of a color class over all $2$-distinguishing colorings of $G$. Our work also utilizes \emph{determining sets} of $G, $ sets of vertices $S \subseteq G$ such that every automorphism of $G$ is uniquely determined by its action on $S.$ The \emph{determining number} of a graph is the size of a smallest determining set. We investigate …
Iterated Jump Graphs,
2023
University of Washington, Seattle
Iterated Jump Graphs, Fran Herr, Legrand Jones Ii
Rose-Hulman Undergraduate Mathematics Journal
The jump graph J(G) of a simple graph G has vertices which represent edges in G where two vertices in J(G) are adjacent if and only if the corresponding edges in G do not share an endpoint. In this paper, we examine sequences of graphs generated by iterating the jump graph operation and characterize the behavior of this sequence for all initial graphs. We build on work by Chartrand et al. who showed that a handful of jump graph sequences terminate and two sequences converge. We extend these results by showing that there are no non-trivial repeating sequences of jump …
The Chromatic Index Of Ring Graphs,
2023
Georgia State University
The Chromatic Index Of Ring Graphs, Lilian Shaffer
Rose-Hulman Undergraduate Mathematics Journal
The goal of graph edge coloring is to color a graph G with as few colors as possible such that each edge receives a color and that adjacent edges, that is, different edges incident to a common vertex, receive different colors. The chromatic index, denoted χ′(G), is the minimum number of colors required for such a coloring to be possible. There are two important lower bounds for χ′(G) on every graph: maximum degree, denoted ∆(G), and density, denoted ω(G). Combining these two lower bounds, we know that every graph’s chromatic index must be at least ∆(G) or …
Outer Independent Double Italian Domination Of Some Graph Products,
2023
Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
Outer Independent Double Italian Domination Of Some Graph Products, Rouhollah Jalaei, Doost Ali Mojdeh
Theory and Applications of Graphs
An outer independent double Italian dominating function on a graph $G$ is a function $f:V(G)\rightarrow\{0,1,2,3\}$ for which each vertex $x\in V(G)$ with $\color{red}{f(x)\in \{0,1\}}$ then $\sum_{y\in N[x]}f(y)\geqslant 3$ and vertices assigned $0$ under $f$ are independent. The outer independent double Italian domination number $\gamma_{oidI}(G)$ is the minimum weight of an outer independent double Italian dominating function of graph $G$. In this work, we present some contributions to the study of outer independent double Italian domination of three graph products. We characterize the Cartesian product, lexicographic product and direct product of custom graphs in terms of this parameter. We also provide …
A Stronger Strong Schottky Lemma For Euclidean Buildings,
2023
The Graduate Center, City University of New York
A Stronger Strong Schottky Lemma For Euclidean Buildings, Michael E. Ferguson
Dissertations, Theses, and Capstone Projects
We provide a criterion for two hyperbolic isometries of a Euclidean building to generate a free group of rank two. In particular, we extend the application of a Strong Schottky Lemma to buildings given by Alperin, Farb and Noskov. We then use this extension to obtain an infinite family of matrices that generate a free group of rank two. In doing so, we also introduce an algorithm that terminates in finite time if the lemma is applicable for pairs of certain kinds of matrices acting on the Euclidean building for the special linear group over certain discretely valued fields.
Counting Power Domination Sets In Complete M-Ary Trees,
2023
Gonzaga University
Counting Power Domination Sets In Complete M-Ary Trees, Hays Whitlatch, Katharine Shultis, Olivia Ramirez, Michele Ortiz, Sviatlana Kniahnitskaya
Theory and Applications of Graphs
Motivated by the question of computing the probability of successful power domination by placing k monitors uniformly at random, in this paper we give a recursive formula to count the number of power domination sets of size k in a labeled complete m-ary tree. As a corollary we show that the desired probability can be computed in exponential with linear exponent time.
Hs-Integral And Eisenstein Integral Mixed Circulant Graphs,
2023
Indian Institute of Technology Guwahati
Hs-Integral And Eisenstein Integral Mixed Circulant Graphs, Monu Kadyan, Bikash Bhattacharjya
Theory and Applications of Graphs
A mixed graph is called \emph{second kind hermitian integral} (\emph{HS-integral}) if the eigenvalues of its Hermitian-adjacency matrix of the second kind are integers. A mixed graph is called \emph{Eisenstein integral} if the eigenvalues of its (0, 1)-adjacency matrix are Eisenstein integers. We characterize the set $S$ for which a mixed circulant graph $\text{Circ}(\mathbb{Z}_n, S)$ is HS-integral. We also show that a mixed circulant graph is Eisenstein integral if and only if it is HS-integral. Further, we express the eigenvalues and the HS-eigenvalues of unitary oriented circulant graphs in terms of generalized M$\ddot{\text{o}}$bius function.
On Rainbow Cycles And Proper Edge Colorings Of Generalized Polygons,
2023
Middle Georgia State University
On Rainbow Cycles And Proper Edge Colorings Of Generalized Polygons, Matt Noble
Theory and Applications of Graphs
An edge coloring of a simple graph G is said to be proper rainbow-cycle-forbidding (PRCF, for short) if no two incident edges receive the same color and for any cycle in G, at least two edges of that cycle receive the same color. A graph G is defined to be PRCF-good if it admits a PRCF edge coloring, and G is deemed PRCF-bad otherwise. In recent work, Hoffman, et al. study PRCF edge colorings and find many examples of PRCF-bad graphs having girth less than or equal to 4. They then ask whether such graphs exist having girth greater than …
On The Uniqueness Of Continuation Of A Partially Defined Metric,
2023
Institute of Applied Mathematics and Mechanics of the NAS of Ukraine
On The Uniqueness Of Continuation Of A Partially Defined Metric, Evgeniy Petrov
Theory and Applications of Graphs
The problem of continuation of a partially defined metric can be efficiently studied using graph theory. Let $G=G(V,E)$ be an undirected graph with the set of vertices $V$ and the set of edges $E$. A necessary and sufficient condition under which the weight $w\colon E\to\mathbb R^+$ on the graph $G$ has a unique continuation to a metric $d\colon V\times V\to\mathbb R^+$ is found.
Algorithmic Methods For Covering Arrays Of Higher Index,
2022
United States Military Academy
Algorithmic Methods For Covering Arrays Of Higher Index, Ryan Dougherty, Kristoffer Kleine, Michael Wagner, Charles J. Colbourn, Dimitris E. Simos
West Point Research Papers
Covering arrays are combinatorial objects used in testing large-scale systems to increase confidence in their correctness. To do so, each interaction of at most a specified number t of factors is represented in at least one test; that is, the covering array has strength t and index 1. For certain systems, the outcome of running a test may be altered by variability of the interaction effect or by measurement error of the test result. To improve the efficacy of testing, one can ensure that each interaction of t or fewer factors is represented in at least λ tests. When λ …
Meertens Number And Its Variations,
2022
International Business Machines
Meertens Number And Its Variations, Chai Wah Wu
Communications on Number Theory and Combinatorial Theory
In 1998, Bird introduced Meertens numbers as numbers that are invariant under a map similar to the Gödel encoding. In base 10, the only known Meertens number is 81312000. We look at some properties of Meertens numbers and consider variations of this concept. In particular, we consider variations of Meertens numbers where there is a finite time algorithm to decide whether such numbers exist, exhibit infinite families of these variations and provide bounds on parameters needed for their existence.
(R1979) Permanent Of Toeplitz-Hessenberg Matrices With Generalized Fibonacci And Lucas Entries,
2022
RECITS Laboratory
(R1979) Permanent Of Toeplitz-Hessenberg Matrices With Generalized Fibonacci And Lucas Entries, Hacène Belbachir, Amine Belkhir, Ihab-Eddine Djellas
Applications and Applied Mathematics: An International Journal (AAM)
In the present paper, we evaluate the permanent and determinant of some Toeplitz-Hessenberg matrices with generalized Fibonacci and generalized Lucas numbers as entries.We develop identities involving sums of products of generalized Fibonacci numbers and generalized Lucas numbers with multinomial coefficients using the matrix structure, and then we present an application of the determinant of such matrices.
Extension Of Fundamental Transversals And Euler’S Polyhedron Theorem,
2022
University of South Florida
Extension Of Fundamental Transversals And Euler’S Polyhedron Theorem, Joy Marie D'Andrea
Annual Symposium on Biomathematics and Ecology Education and Research
No abstract provided.
