Bbt Side Mold Assy,
2022
East Tennessee State University
Bbt Side Mold Assy, Bill Hemphill
STEM Guitar Project’s BBT Acoustic Kit
This electronic document file set covers the design and fabrication information of the ETSU Guitar Building Project’s BBT (OM-sized) Side Mold Assy for use with the STEM Guitar Project’s standard acoustic guitar kit. The extended 'as built' data set contains an overview file and companion video, the 'parent' CADD drawing, CADD data for laser etching and cutting a drill &/or layout template, CADD drawings in AutoCAD .DWG and .DXF R12 formats of the centerline tool paths for creating the mold assembly pieces on an AXYZ CNC router, and support documentation for CAM applications including router bit specifications, feeds ...
Unomaha Problem Of The Week (2021-2022 Edition),
2022
University of Nebraska at Omaha
Unomaha Problem Of The Week (2021-2022 Edition), Brad Horner, Jordan M. Sahs
Student Research and Creative Activity Fair
The University of Omaha math department's Problem of the Week was taken over in Fall 2019 from faculty by the authors. The structure: each semester (Fall and Spring), three problems are given per week for twelve weeks, with each problem worth ten points - mimicking the structure of arguably the most well-regarded university math competition around, the Putnam Competition, with prizes awarded to top-scorers at semester's end. The weekly competition was halted midway through Spring 2020 due to COVID-19, but relaunched again in Fall 2021, with massive changes.
Now there are three difficulty tiers to POW problems, roughly corresponding ...
The Zariski-Riemann Space As A Universal Model For The Birational Geometry Of A Function Field,
2022
The Graduate Center, City University of New York
The Zariski-Riemann Space As A Universal Model For The Birational Geometry Of A Function Field, Giovan Battista Pignatti Morano Di Custoza
Dissertations, Theses, and Capstone Projects
Given a function field $K$ over an algebraically closed field $k$, we propose to use the Zariski-Riemann space $\ZR (K/k)$ of valuation rings as a universal model that governs the birational geometry of the field extension $K/k$. More specifically, we find an exact correspondence between ad-hoc collections of open subsets of $\ZR (K/k)$ ordered by quasi-refinements and the category of normal models of $K/k$ with morphisms the birational maps. We then introduce suitable Grothendieck topologies and we develop a sheaf theory on $\ZR (K/k)$ which induces, locally at once, the sheaf theory of each normal ...
On Isomorphic K-Rational Groups Of Isogenous Elliptic Curves Over Finite Fields,
2022
University of Rochester
On Isomorphic K-Rational Groups Of Isogenous Elliptic Curves Over Finite Fields, Ben Kuehnert, Geneva Schlafly, Zecheng Yi
Rose-Hulman Undergraduate Mathematics Journal
It is well known that two elliptic curves are isogenous if and only if they have same number of rational points. In fact, isogenous curves can even have isomorphic groups of rational points in certain cases. In this paper, we consolidate all the current literature on this relationship and give a extensive classification of the conditions in which this relationship arises. First we prove two ordinary isogenous elliptic curves have isomorphic groups of rational points when they have the same $j$-invariant. Then, we extend this result to certain isogenous supersingular elliptic curves, namely those with equal $j$-invariant of ...
The Examination Of The Arithmetic Surface (3, 5) Over Q,
2022
California State University - San Bernardino
The Examination Of The Arithmetic Surface (3, 5) Over Q, Rachel J. Arguelles
Electronic Theses, Projects, and Dissertations
This thesis is centered around the construction and analysis of the principal arithmetic surface (3, 5) over Q. By adjoining the two symbols i,j, where i2 = 3, j2 = 5, such that ij = -ji, I can produce a quaternion algebra over Q. I use this quaternion algebra to find a discrete subgroup of SL2(R), which I identify with isometries of the hyperbolic plane. From this quaternion algebra, I produce a large list of matrices and apply them via Mobius transformations to the point (0, 2), which is the center of my Dirichlet domain. This list of ...
Lattice Reduction Algorithms,
2022
California State University, San Bernardino
Lattice Reduction Algorithms, Juan Ortega
Electronic Theses, Projects, and Dissertations
The purpose of this thesis is to propose and analyze an algorithm that follows
similar steps of Guassian Lattice Reduction Algorithm in two-dimensions and applying
them to three-dimensions. We start off by discussing the importance of cryptography in
our day to day lives. Then we dive into some linear algebra and discuss specific topics that
will later help us in understanding lattice reduction algorithms. We discuss two lattice
problems: the shortest vector problem and the closest vector problem. Then we introduce
two types of lattice reduction algorithms: Guassian Lattice Reduction in two-dimensions
and the LLL Algortihm. We illustrate how both ...
Towards A Generalization Of Fulton's Intersection Multiplicity Algorithm,
2022
The University of Western Ontario
Towards A Generalization Of Fulton's Intersection Multiplicity Algorithm, Ryan Sandford
Electronic Thesis and Dissertation Repository
In this manuscript we generalize Fulton's bivariate intersection multiplicity algorithm to a partial intersection multiplicity algorithm in the n-variate setting. We extend this generalization of Fulton's algorithm to work at any point, rational or not, using the theory of regular chains. We implement these algorithms in Maple and provide experimental testing. The results indicate the proposed algorithm often outperforms the existing standard basis-free intersection multiplicity algorithm in Maple, typically by one to two orders of magnitude. Moreover, we also provide some examples where the proposed algorithm outperforms intersection multiplicity algorithms which rely on standard bases, indicating the proposed ...
On The Geometry Of Multi-Affine Polynomials,
2022
The University of Western Ontario
On The Geometry Of Multi-Affine Polynomials, Junquan Xiao
Electronic Thesis and Dissertation Repository
This work investigates several geometric properties of the solutions of the multi-affine polynomials. Chapters 1, 2 discuss two different notions of invariant circles. Chapter 3 gives several loci of polynomials of degree three. A locus of a complex polynomial p(z) is a minimal, with respect to inclusion, set that contains at least one point of every solution of the polarization of the polynomial. The study of such objects allows one to improve upon know results about the location of zeros and critical points of complex polynomials, see for example [22] and [24]. A complex polynomial has many loci. It ...
Anticanonical Models Of Smoothings Of Cyclic Quotient Singularities,
2022
University of Massachusetts Amherst
Anticanonical Models Of Smoothings Of Cyclic Quotient Singularities, Arie A. Stern Gonzalez
Doctoral Dissertations
In this thesis we study anticanonical models of smoothings of cyclic quotient singularities. Given a surface cyclic quotient singularity $Q\in Y$, it is an open problem to determine all smoothings of $Y$ that admit an anticanonical model and to compute it. In \cite{HTU}, Hacking, Tevelev and Urz\'ua studied certain irreducible components of the versal deformation space of $Y$, and within these components, they found one parameter smoothings $\Y \to \A^1$ that admit an anticanonical model and proved that they have canonical singularities. Moreover, they compute explicitly the anticanonical models that have terminal singularities using Mori's ...
Tropical Geometry Of T-Varieties With Applications To Algebraic Statistics,
2022
University of Kentucky
Tropical Geometry Of T-Varieties With Applications To Algebraic Statistics, Joseph Cummings
Theses and Dissertations--Mathematics
Varieties with group action have been of interest to algebraic geometers for centuries. In particular, toric varieties have proven useful both theoretically and in practical applications. A rich theory blending algebraic geometry and polyhedral geometry has been developed for T-varieties which are natural generalizations of toric varieties. The first results discussed in this dissertation study the relationship between torus actions and the well-poised property. In particular, I show that the well-poised property is preserved under a geometric invariant theory quotient by a (quasi-)torus. Conversely, I argue that T-varieties built on a well-poised base preserve the well-poised property when the ...
Equisingular Approximation Of Analytic Germs,
2021
The University of Western Ontario
Equisingular Approximation Of Analytic Germs, Aftab Yusuf Patel
Electronic Thesis and Dissertation Repository
This thesis deals with the problem of approximating germs of real or complex analytic spaces by Nash or algebraic germs. In particular, we investigate the problem of approximating analytic germs in various ways while preserving the Hilbert-Samuel function, which is of importance in the resolution of singularities. We first show that analytic germs that are complete intersections can be arbitrarily closely approximated by algebraic germs which are complete intersections with the same Hilbert-Samuel function. We then show that analytic germs whose local rings are Cohen-Macaulay can be arbitrarily closely approximated by Nash germs whose local rings are Cohen- Macaulay and ...
Acceleration Skinning: Kinematics-Driven Cartoon Effects For Articulated Characters,
2021
Clemson University
Acceleration Skinning: Kinematics-Driven Cartoon Effects For Articulated Characters, Niranjan Kalyanasundaram
All Theses
Secondary effects are key to adding fluidity and style to animation. This thesis introduces the idea of “Acceleration Skinning” following a recent well-received technique, Velocity Skinning, to automatically create secondary motion in character animation by modifying the standard pipeline for skeletal rig skinning. These effects, which animators may refer to as squash and stretch or drag, attempt to create an illusion of inertia. In this thesis, I extend the Velocity Skinning technique to include acceleration for creating a wider gamut of cartoon effects. I explore three new deformers that make use of this Acceleration Skinning framework: followthrough, centripetal stretch, and ...
Cache-Friendly, Modular And Parallel Schemes For Computing Subresultant Chains,
2021
The University of Western Ontario
Cache-Friendly, Modular And Parallel Schemes For Computing Subresultant Chains, Mohammadali Asadi
Electronic Thesis and Dissertation Repository
The RegularChains library in Maple offers a collection of commands for solving polynomial systems symbolically with taking advantage of the theory of regular chains. The primary goal of this thesis is algorithmic contributions, in particular, to high-performance computational schemes for subresultant chains and underlying routines to extend that of RegularChains in a C/C++ open-source library.
Subresultants are one of the most fundamental tools in computer algebra. They are at the core of numerous algorithms including, but not limited to, polynomial GCD computations, polynomial system solving, and symbolic integration. When the subresultant chain of two polynomials is involved in a ...
Windows In Algebraic Geometry And Applications To Moduli,
2021
University of Massachusetts Amherst
Windows In Algebraic Geometry And Applications To Moduli, Sebastian Torres
Doctoral Dissertations
We apply the theory of windows, as developed by Halpern-Leistner and by Ballard, Favero and Katzarkov, to study certain moduli spaces and their derived categories. Using quantization and other techniques we show that stable GIT quotients of $(\mathbb{P}^1)^n$ by $PGL_2$ over an algebraically closed field of characteristic zero satisfy a rare property called Bott vanishing, which states that $\Omega^j_Y \otimes L$ has no higher cohomology for every j and every ample line bundle L. Similar techniques are used to reprove the well known fact that toric varieties satisfy Bott vanishing. We also use windows to explore ...
Equivariant Smoothings Of Cusp Singularities,
2021
University of Massachusetts Amherst
Equivariant Smoothings Of Cusp Singularities, Angelica Simonetti
Doctoral Dissertations
Let $p \in X$ be the germ of a cusp singularity and let $\iota$ be an antisymplectic involution, that is an involution free on $X\setminus \{p\}$ and such that there exists a nowhere vanishing holomorphic 2-form $\Omega$ on $X\setminus \{p\}$ for which $\iota^*(\Omega)=-\Omega$. We prove that a sufficient condiition for such a singularity equipped with an antisymplectic involution to be equivariantly smoothable is the existence of a Looijenga (or anticanonical) pair $(Y,D)$ that admits an involution free on $Y\setminus D$ and that reverses the orientation of $D$.
Using Lie Sphere Geometry To Study Dupin Hypersurfaces In R^N,
2021
College of the Holy Cross
Using Lie Sphere Geometry To Study Dupin Hypersurfaces In R^N, Thomas E. Cecil
Mathematics Department Faculty Scholarship
A hypersurface M in Rn or Sn is said to be Dupin if along each curvature surface, the corresponding principal curvature is constant. A Dupin hypersurface is said to be proper Dupin if each principal curvature has constant multiplicity on M, i.e., the number of distinct principal curvatures is constant on M. The notions of Dupin and proper Dupin hypersurfaces in Rn or Sn can be generalized to the setting of Lie sphere geometry, and these properties are easily seen to be invariant under Lie sphere transformations. This makes Lie sphere geometry an effective setting ...
Distribution Of The P-Torsion Of Jacobian Groups Of Regular Matroids,
2021
The University of Western Ontairo
Distribution Of The P-Torsion Of Jacobian Groups Of Regular Matroids, Sergio R. Zapata Ceballos
Electronic Thesis and Dissertation Repository
Given a regular matroid $M$ and a map $\lambda\colon E(M)\to \N$, we construct a regular matroid $M_\lambda$. Then we study the distribution of the $p$-torsion of the Jacobian groups of the family $\{M_\lambda\}_{\lambda\in\N^{E(M)}}$. We approach the problem by parameterizing the Jacobian groups of this family with non-trivial $p$-torsion by the $\F_p$-rational points of the configuration hypersurface associated to $M$. In this way, we reduce the problem to counting points over finite fields. As a result, we obtain a closed formula for the proportion of these groups ...
Searching For New Relations Among The Eilenberg-Zilber Maps,
2021
Western University
Searching For New Relations Among The Eilenberg-Zilber Maps, Owen T. Abma
Undergraduate Student Research Internships Conference
The goal of this project was to write a computer program that would aid in the search for relations among the Eilenberg-Zilber maps, which relate to simplicial objects in algebraic topology. This presentation outlines the process of writing this program, the challenges faced along the way, and the final results of the project.
Studies Of Subvarieties Of Classical Complex Algebraic Geometry,
2021
Western University
Studies Of Subvarieties Of Classical Complex Algebraic Geometry, Wenzhe Wang
Undergraduate Student Research Internships Conference
My project in this USRI program is to study subvariety of classical complex algebraic geometry. I observed the orbit of elements in the unit sphere in space ℂ² ⊗ ℂ², the structure of unit sphere of ℂ² ⊗ ℂ². After this, I tried to generalize the result to ℂ^n ⊗ ℂ^n.
From Mathematics To Medicine: A Practical Primer On Topological Data Analysis (Tda) And The Development Of Related Analytic Tools For The Functional Discovery Of Latent Structure In Fmri Data,
2021
Wayne State University
From Mathematics To Medicine: A Practical Primer On Topological Data Analysis (Tda) And The Development Of Related Analytic Tools For The Functional Discovery Of Latent Structure In Fmri Data, Andrew Salch, Adam Regalski, Hassan Abdallah, Raviteja Suryadevara, Michael J. Catanzaro, Vaibhav A. Diwadkar
Mathematics Faculty Research Publications
fMRI is the preeminent method for collecting signals from the human brain in vivo, for using these signals in the service of functional discovery, and relating these discoveries to anatomical structure. Numerous computational and mathematical techniques have been deployed to extract information from the fMRI signal. Yet, the application of Topological Data Analyses (TDA) remain limited to certain sub-areas such as connectomics (that is, with summarized versions of fMRI data). While connectomics is a natural and important area of application of TDA, applications of TDA in the service of extracting structure from the (non-summarized) fMRI data itself are heretofore nonexistent ...