New Effective Transformational Computational Methods,
2024
University of Maryland Eastern Shore
New Effective Transformational Computational Methods, Jun Zhang, Ruzong Fan, Fangyang Shen, Junyi Tu
Publications and Research
Mathematics serves as a fundamental intelligent theoretic basis for computation, and mathematical analysis is very useful to develop computational methods to solve various problems in science and engineering. Integral transforms such as Laplace Transform have been playing an important role in computational methods. In this paper, we will introduce Sumudu Transform in a new computational approach, in which effective computational methods will be developed and implemented. Such computational methods are straightforward to understand, but powerful to incorporate into computational science to solve different problems automatically. We will provide computational analysis and essentiality by surveying and summarizing some related recent works, …
Nonlinear Filtering Of Classical And Quantum Spin Systems,
2024
National Academies/Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433 USA
Nonlinear Filtering Of Classical And Quantum Spin Systems, Sivaguru S. Sritharan, Saba Mudaliar
Journal of Stochastic Analysis
No abstract provided.
On The Singular Pebbling Number Of A Graph,
2024
University of Waterloo
On The Singular Pebbling Number Of A Graph, Harmony R. Morris
Rose-Hulman Undergraduate Mathematics Journal
In this paper, we define a new parameter of a connected graph as a spin-off of the pebbling number (which is the smallest t such that every supply of t pebbles can satisfy every demand of one pebble). This new parameter is the singular pebbling number, the smallest t such that a player can be given any configuration of at least t pebbles and any target vertex and can successfully move pebbles so that exactly one pebble ends on the target vertex. We also prove that the singular pebbling number of any graph on 3 or more vertices is equal …
Differential Equations For A Changing World:How To Engage Students In Learning And Applying Differential Equations,
2024
University of Massachusetts Dartmouth
Differential Equations For A Changing World:How To Engage Students In Learning And Applying Differential Equations, Biyong Luo
CODEE Journal
In this article, I share my decade-long experience teaching an intensive five-week summer Differential Equation course covering complex topics and tips for creating an interactive and supportive learning environment to optimize student engagement. This article provides my detailed approach to planning and teaching an asynchronous course with rigor and flexibility for each student. An interactive teaching approach and variety of learning activities will augment students’ mathematical fluency and appreciation of the importance of differential equations in modeling a wide variety of real-world situations with special attention to ways differential equations can be relevant to creating public policy.
Raising Student Awareness Of Environmental Issues Via Writing Assignments With Differential Equations,
2024
Gonzaga University
Raising Student Awareness Of Environmental Issues Via Writing Assignments With Differential Equations, Michelle L. Ghrist
CODEE Journal
In this paper, I discuss two environmentally-focused writing assignments that I developed and implemented in recent integral calculus and differential equations courses. These models of carbon storage and PCB’s in a river provide interesting applications of one-compartment mixing problems. The assignments were intended to focus student attention on sustainability concerns while also developing other essential skills. I discuss these assignments and their effect on my students’ technical writing and environmental awareness. Detailed introductory instructions and mostly complete solutions to these assignments appear in the appendices, to include sample student work.
Blue Whale And Krill Populations Modeling,
2024
The Citadel
Blue Whale And Krill Populations Modeling, Li Zhang
CODEE Journal
We present an intriguing topic in an undergraduate mathematical modeling course where predator-prey models are taught to our students. We describe modeling activities and the use of technology that can be implemented in teaching this topic. Through modeling activities, students are expected to use the numerical and graphical methods to observe the qualitative long-term behavior of predator and prey populations. Although there are other choices of predators and prey, we find that using blue whales and krill as predator and prey, respectively, would be most beneficial in strengthening our students' awareness of protecting endangered species and its impact on climate …
Modeling Aircraft Takeoffs,
2024
Sewanee University
Modeling Aircraft Takeoffs, Catherine Cavagnaro
CODEE Journal
Real-world applications can demonstrate how mathematical models describe and provide insight into familiar physical systems. In this paper, we apply techniques from a first-semester differential equations course that shed light on a problem from aviation. In particular, we construct several differential equations that model the distance that an aircraft requires to become airborne. A popular thumb rule that pilots have used for decades appears to emanate from one of these models. We will see that this rule does not follow from a representative model and suggest a better method of ensuring safety during takeoff. Aircraft safety is definitely a matter …
Ode Models Of Wealth Concentration And Taxation,
2024
Tufts University and American University of Armenia
Ode Models Of Wealth Concentration And Taxation, Bruce Boghosian, Christoph Borgers
CODEE Journal
We refer to an individual holding a non-negligible fraction of the country’s total wealth as an oligarch. We explain how a model due to Boghosian et al. can be used to explore the effects of taxation on the emergence of oligarchs. The model suggests that oligarchs will emerge when wealth taxation is below a certain threshold, not when it is above the threshold. The underlying mechanism is a transcritical bifurcation. The model also suggests that taxation of income and capital gains alone cannot prevent the emergence of oligarchs. We suggest several opportunities for students to explore modifications of the model.
Using A Sand Tank Groundwater Model To Investigate A Groundwater Flow Model,
2024
Ball State University
Using A Sand Tank Groundwater Model To Investigate A Groundwater Flow Model, Christopher Evrard, Callie Johnson, Michael A. Karls, Nicole Regnier
CODEE Journal
A Sand Tank Groundwater Model is a tabletop physical model constructed of plexiglass and filled with sand that is typically used to illustrate how groundwater water flows through an aquifer, how water wells work, and the effects of contaminants introduced into an aquifer. Mathematically groundwater flow through an aquifer can be modeled with the heat equation. We will show how a Sand Tank Groundwater Model can be used to simulate groundwater flow through an aquifer with a no flow boundary condition.
To Open Or Not To Open: Developing A Covid-19 Model Specific To Small Residential Campuses,
2024
Scripps College
To Open Or Not To Open: Developing A Covid-19 Model Specific To Small Residential Campuses, Christina Joy Edholm, Maryann Hohn, Nicole Lee Falicov, Emily Lee, Lily Natasha Wartman, Ami Radunskaya
CODEE Journal
In May 2020, administrators of residential colleges struggled with the decision of whether or not to open their campuses in the Fall semester of 2020. To help guide this decision, we formulated an ODE model capturing the dynamics of the spread of COVID-19 on a residential campus. In order to provide as much information as possible for administrators, the model accounts for the different behaviors, susceptibility, and risks in the various sub-populations that make up the campus community. In particular, we start with a traditional SEIR model and add compartments representing relevant variables, such as quarantine compartments and a hospitalized …
Applying The Sir Model: Can Students Advise The Mayor Of A Small Community?,
2024
University of Wollongong
Applying The Sir Model: Can Students Advise The Mayor Of A Small Community?, Carrin Goosen, Mark I. Nelson, Mahime Watanabe
CODEE Journal
This is an account of a modelling scenario that uses the sir epidemic model. It was used in a third year applied mathematics subject. All students were enrolled in a mathematics degree of some type. Students are presented with the results of a test carried out on 100 individuals in a community containing 3000 people. From this they determined the number of infectious and recovered individuals in the population. Given the per capita recovery rate and making a suitable assumption about the number of infectious individuals at the start of the epidemic, they then estimate the infectious contact rate and …
Fitting A Covid-19 Model Incorporating Senses Of Safety And Caution To Local Data From Spartanburg County, South Carolina,
2024
Brown University
Fitting A Covid-19 Model Incorporating Senses Of Safety And Caution To Local Data From Spartanburg County, South Carolina, D. Chloe Griffin, Amanda Mangum
CODEE Journal
Common mechanistic models include Susceptible-Infected-Removed (SIR) and Susceptible-Exposed-Infected-Removed (SEIR) models. These models in their basic forms have generally failed to capture the nature of the COVID-19 pandemic's multiple waves and do not take into account public policies such as social distancing, mask mandates, and the ``Stay-at-Home'' orders implemented in early 2020. While the Susceptible-Vaccinated-Infected-Recovered-Deceased (SVIRD) model only adds two more compartments to the SIR model, the inclusion of time-dependent parameters allows for the model to better capture the first two waves of the COVID-19 pandemic when surveillance testing was common practice for a large portion of the population. We find …
Nonlinear Dynamics Of Mountain Pine Beetle Populations: Discussion Of Forestry Policy, A Survey Of Existing Mathematical Models, And Code Base Demonstration,
2024
Colorado School of Mines
Nonlinear Dynamics Of Mountain Pine Beetle Populations: Discussion Of Forestry Policy, A Survey Of Existing Mathematical Models, And Code Base Demonstration, Scott A. Strong, Maya Maes-Johnson
CODEE Journal
This article presents existing mathematical models associated with mountain pine beetle populations in lodgepole pine forests, whose reproductive cycle requires the destruction of colonized host trees, decreasing timber availability/quality, and providing fuel sources for wildfires. With the existence of a positive-feedback loop with environmental warming, the need for intervention and management is clear. However, the legislative responses to the focusing events from our 2000-2010 North American epidemics are characterized as under-leveraged. While the reasons for this are multifaceted, increasing the capacity of STEM-informed individuals to take part in quantitative modeling of the underlying ecosystem generates awareness and provides pathways connecting …
Solar Panels, Euler’S Method And Community-Based Projects: Connecting Differential Equations With Climate Change,
2024
Bryn Mawr College
Solar Panels, Euler’S Method And Community-Based Projects: Connecting Differential Equations With Climate Change, Victor J. Donnay
CODEE Journal
How does mathematics connect with the search for solutions to the climate emergency? One simple connection, which can be explored in an introductory differential equations course, can be found by analyzing the energy generated by solar panels or wind turbines. The power generated by these devices is typically recorded at standard time intervals producing a data set which gives a discrete approximation to the power function $P(t)$. Using numerical techniques such as Euler’s method, one can determine the energy generated. Here we describe how we introduce the topic of solar power, apply Euler’s method to determine the energy generated, and …
Time Scale Theory On Stability Of Explicit And Implicit Discrete Epidemic Models: Applications To Swine Flu Outbreak,
2024
Missouri University of Science and Technology
Time Scale Theory On Stability Of Explicit And Implicit Discrete Epidemic Models: Applications To Swine Flu Outbreak, Gülşah Yeni, Elvan Akın, Naveen K. Vaidya
Mathematics and Statistics Faculty Research & Creative Works
Time scales theory has been in use since the 1980s with many applications. Only very recently, it has been used to describe within-host and between-hosts dynamics of infectious diseases. In this study, we present explicit and implicit discrete epidemic models motivated by the time scales modeling approach. We use these models to formulate the basic reproduction number, which determines whether an outbreak occurs, or the disease dies out. We discuss the stability of the disease-free and endemic equilibrium points using the linearization method and Lyapunov function. Furthermore, we apply our models to swine flu outbreak data to demonstrate that the …
On A Multivalued Prescribed Mean Curvature Problem And Inclusions Defined On Dual Spaces,
2024
Missouri University of Science and Technology
On A Multivalued Prescribed Mean Curvature Problem And Inclusions Defined On Dual Spaces, Vy Khoi Le
Mathematics and Statistics Faculty Research & Creative Works
This article addresses two main objectives. First, it establishes a functional analytic framework and presents existence results for a quasilinear inclusion describing a prescribed mean curvature problem with homogeneous Dirichlet boundary conditions, involving a multivalued lower order term. The formulation of the problem is done in the space of functions with bounded variation. The second objective is to introduce a general existence theory for inclusions defined on nonreflexive Banach spaces, which is specifically applicable to the aforementioned prescribed mean curvature problem. This problem can be formulated as a multivalued variational inequality in the space of functions with bounded variation, which, …
Multiscale Modelling Of Brain Networks And The Analysis Of Dynamic Processes In Neurodegenerative Disorders,
2024
Wilfrid Laurier University
Multiscale Modelling Of Brain Networks And The Analysis Of Dynamic Processes In Neurodegenerative Disorders, Hina Shaheen
Theses and Dissertations (Comprehensive)
The complex nature of the human brain, with its intricate organic structure and multiscale spatio-temporal characteristics ranging from synapses to the entire brain, presents a major obstacle in brain modelling. Capturing this complexity poses a significant challenge for researchers. The complex interplay of coupled multiphysics and biochemical activities within this intricate system shapes the brain's capacity, functioning within a structure-function relationship that necessitates a specific mathematical framework. Advanced mathematical modelling approaches that incorporate the coupling of brain networks and the analysis of dynamic processes are essential for advancing therapeutic strategies aimed at treating neurodegenerative diseases (NDDs), which afflict millions of …
Facilitating Mathematics And Computer Science Connections: A Cross-Curricular Approach,
2024
Utah State University
Facilitating Mathematics And Computer Science Connections: A Cross-Curricular Approach, Kimberly E. Beck, Jessica F. Shumway, Umar Shehzad, Jody Clarke-Midura, Mimi Recker
Publications
In the United States, school curricula are often created and taught with distinct boundaries between disciplines. This division between curricular areas may serve as a hindrance to students' long-term learning and their ability to generalize. In contrast, cross-curricular pedagogy provides a way for students to think beyond the classroom walls and make important connections across disciplines. The purpose of this paper is a theoretical reflection on our use of Expansive Framing in our design of lessons across learning environments within the school. We provide a narrative account of our early work in using this theoretical framework to co-plan and enact …
Constrained Quantization For The Cantor Distribution With A Family Of Constraints,
2024
The University of Texas Rio Grande Valley
Constrained Quantization For The Cantor Distribution With A Family Of Constraints, Megha Pandey, Mrinal Kanti Roychowdhury
School of Mathematical and Statistical Sciences Faculty Publications and Presentations
In this paper, for a given family of constraints and the classical Cantor distribution we determine the optimal sets of n-points, nth constrained quantization errors for all positive integers n. We also calculate the constrained quantization dimension and the constrained quantization coefficient, and see that the constrained quantization dimension D(P) exists as a finite positive number, but the D(P)-dimensional constrained quantization coefficient does not exist.
Analyzing A Smartphone Battle Using Bass Competition Model,
2023
United States Air Force Academy
Analyzing A Smartphone Battle Using Bass Competition Model, Maila Hallare, Alireza Hosseinkhan, Hasala Senpathy K. Gallolu Kankanamalage
CODEE Journal
Many examples of 2x2 nonlinear systems in a first-course in ODE or a mathematical modeling class come from physics or biology. We present an example that comes from the business or management sciences, namely, the Bass diffusion model. We believe that students will appreciate this model because it does not require a lot of background material and it is used to analyze sales data and serve as a guide in pricing decisions for a single product. In this project, we create a 2x2 ODE system that is inspired by the Bass diffusion model; we call the resulting system the Bass …
