Open Access. Powered by Scholars. Published by Universities.®

Databases and Information Systems Commons

Open Access. Powered by Scholars. Published by Universities.®

5,948 Full-Text Articles 7,761 Authors 2,833,088 Downloads 196 Institutions

All Articles in Databases and Information Systems

Faceted Search

5,948 full-text articles. Page 3 of 220.

Deep Just-In-Time Defect Localization, Fangcheng QIU, Zhipeng GAO, Xin XIA, David LO, John GRUNDY, Xinyu WANG 2022 Singapore Management University

Deep Just-In-Time Defect Localization, Fangcheng Qiu, Zhipeng Gao, Xin Xia, David Lo, John Grundy, Xinyu Wang

Research Collection School Of Computing and Information Systems

During software development and maintenance, defect localization is an essential part of software quality assurance. Even though different techniques have been proposed for defect localization, i.e., information retrieval (IR)-based techniques and spectrum-based techniques, they can only work after the defect has been exposed, which can be too late and costly to adapt to the newly introduced bugs in the daily development. There are also many JIT defect prediction tools that have been proposed to predict the buggy commit. But these tools do not locate the suspicious buggy positions in the buggy commit. To assist developers to detect bugs in time …


Using Landsat Satellite Imagery To Estimate Groundcover In The Grainbelt Of Western Australia, Justin Laycock, Nick Middleton, Karen Holmes 2022 Department of Primary Industries and Regional Development, Western Australia

Using Landsat Satellite Imagery To Estimate Groundcover In The Grainbelt Of Western Australia, Justin Laycock, Nick Middleton, Karen Holmes

Resource management technical reports

Maintaining vegetative groundcover is an important component of sustainable agricultural systems and plays a critical function for soil and land conservation in Western Australia’s (WA) grainbelt (the south-west cropping region). This report describes how satellite imagery can be used to quantitatively and objectively estimate total vegetative groundcover, both in near real time and historically across large areas. We used the Landsat seasonal fractional groundcover products developed by the Joint Remote Sensing Research Program from the extensive archive of Landsat imagery. These products provide an estimate of the percentage of green vegetation, non-green vegetation and bare soil for each 30 m …


Prompting For Multimodal Hateful Meme Classification, Rui CAO, Roy Ka-Wei LEE, Wen-Haw CHONG, Jing JIANG 2022 Singapore Management University

Prompting For Multimodal Hateful Meme Classification, Rui Cao, Roy Ka-Wei Lee, Wen-Haw Chong, Jing Jiang

Research Collection School Of Computing and Information Systems

Hateful meme classification is a challenging multimodal task that requires complex reasoning and contextual background knowledge. Ideally, we could leverage an explicit external knowledge base to supplement contextual and cultural information in hateful memes. However, there is no known explicit external knowledge base that could provide such hate speech contextual information. To address this gap, we propose PromptHate, a simple yet effective prompt-based model that prompts pre-trained language models (PLMs) for hateful meme classification. Specifically, we construct simple prompts and provide a few in-context examples to exploit the implicit knowledge in the pretrained RoBERTa language model for hateful meme classification. …


Curiosity-Driven And Victim-Aware Adversarial Policies, Chen GONG, Zhou YANG, Yunpeng BAI, Jieke SHI, Arunesh SINHA, Bowen XU, David LO, Xinwen HOU, Guoliang FAN 2022 Singapore Management University

Curiosity-Driven And Victim-Aware Adversarial Policies, Chen Gong, Zhou Yang, Yunpeng Bai, Jieke Shi, Arunesh Sinha, Bowen Xu, David Lo, Xinwen Hou, Guoliang Fan

Research Collection School Of Computing and Information Systems

Recent years have witnessed great potential in applying Deep Reinforcement Learning (DRL) in various challenging applications, such as autonomous driving, nuclear fusion control, complex game playing, etc. However, recently researchers have revealed that deep reinforcement learning models are vulnerable to adversarial attacks: malicious attackers can train adversarial policies to tamper with the observations of a well-trained victim agent, the latter of which fails dramatically when faced with such an attack. Understanding and improving the adversarial robustness of deep reinforcement learning is of great importance in enhancing the quality and reliability of a wide range of DRL-enabled systems. In this paper, …


Gamified Online Industry Learning Platform For Teaching Of Foundational Computing Skills, Yi Meng LAU, Rafael Jose BARROS BARRIOS, GOTTIPATI Swapna, Kyong Jin SHIM 2022 Singapore Management University

Gamified Online Industry Learning Platform For Teaching Of Foundational Computing Skills, Yi Meng Lau, Rafael Jose Barros Barrios, Gottipati Swapna, Kyong Jin Shim

Research Collection School Of Computing and Information Systems

Online industry learning platforms are widely used by organizations for employee training and upskilling. Courses or lessons offered by these platforms can be generic or specific to an enterprise application. The increased demand of new hires to learn these platforms or who are already certified in some of these courses has led universities to look at the opportunities for integrating online industry learning platforms into their curricula. Universities hope to use these platforms to aid students in their learning of concepts and theories. At the same time, these platforms can equip students with industryrecognized certifications or digital badges. This paper …


S-Prompts Learning With Pre-Trained Transformers: An Occam's Razor For Domain Incremental Learning, Yabin WANG, Zhiwu HUANG, Xiaopeng. HONG 2022 Singapore Management University

S-Prompts Learning With Pre-Trained Transformers: An Occam's Razor For Domain Incremental Learning, Yabin Wang, Zhiwu Huang, Xiaopeng. Hong

Research Collection School Of Computing and Information Systems

State-of-the-art deep neural networks are still struggling to address the catastrophic forgetting problem in continual learning. In this paper, we propose one simple paradigm (named as S-Prompting) and two concrete approaches to highly reduce the forgetting degree in one of the most typical continual learning scenarios, i.e., domain increment learning (DIL). The key idea of the paradigm is to learn prompts independently across domains with pre-trained transformers, avoiding the use of exemplars that commonly appear in conventional methods. This results in a win-win game where the prompting can achieve the best for each domain. The independent prompting across domains only …


A Recommendation On How To Teach K-Means In Introductory Analytics Courses, M. THULASIDAS 2022 Singapore Management University

A Recommendation On How To Teach K-Means In Introductory Analytics Courses, M. Thulasidas

Research Collection School Of Computing and Information Systems

We teach K-Means clustering in introductory data analytics courses because it is one of the simplest and most widely used unsupervised machine learning algorithms. However, one drawback of this algorithm is that it does not offer a clear method to determine the appropriate number of clusters; it does not have a built-in mechanism for K selection. What is usually taught as the solution for the K Selection problem is the so-called elbow method, where we look at the incremental changes in some quality metric (usually, the sum of squared errors, SSE), trying to find a sudden change. In addition to …


Bank Error In Whose Favor? A Case Study Of Decentralized Finance Misgovernance, Ping Fan KE, Ka Chung Boris NG 2022 Singapore Management University

Bank Error In Whose Favor? A Case Study Of Decentralized Finance Misgovernance, Ping Fan Ke, Ka Chung Boris Ng

Research Collection School Of Computing and Information Systems

Decentralized Finance (DeFi) emerged rapidly in recent years and provided open and transparent financial services to the public. Due to its popularity, it is not uncommon to see cybersecurity incidents in the DeFi landscape, yet the impact of such incidents is under-studied. In this paper, we examine two incidents in DeFi protocol that are mainly caused by misgovernance and mistake in the smart contract. By using the synthetic control method, we found that the incident in Alchemix did not have a significant effect on the total value locked (TVL) in the protocol, whereas the incident in Compound caused a 6.13% …


Rural America Is Still Technologically Behind: Why It Matters Now More Than Ever, Paul Force-Emery Mackie 2022 Minnesota State University - Mankato

Rural America Is Still Technologically Behind: Why It Matters Now More Than Ever, Paul Force-Emery Mackie

Social Work Department Publications

No abstract provided.


Farmer Adoption Of Advanced Technology In Agribusiness, Justin W. Belcher 2022 University of South Florida

Farmer Adoption Of Advanced Technology In Agribusiness, Justin W. Belcher

USF Tampa Graduate Theses and Dissertations

Normally, family-owned farms are slow to adopt advanced technologies though these technologies can provide several benefits to the farm and have the potential to increase farm production volumes to help meet future population growth. The goal of this study was to document the factors that influence the adoption decision of advanced technologies by family-owned farms and what strategies can be used to motivate adoption. Case study research was conducted to gather data in a more structured way from family-owned farms typically excluded from past research for the purpose of comparing similarities across similar and dissimilar farms. For generalizing similarities, a …


Designing A Messaging Strategy To Improve Information Security Policy Compliance, Federico Giovannetti 2022 University of South Florida

Designing A Messaging Strategy To Improve Information Security Policy Compliance, Federico Giovannetti

USF Tampa Graduate Theses and Dissertations

Lack of employee compliance with information security policies is a key factor driving security incidents. Information security practitioners struggle to enforce policy compliance while employees try to curtail safeguards in favor of expediency and other perceived business goals. Several studies have shown individual and organizational factors influencing this type of employee behavior. However, few have recommended management-level interventions that can be used as a solution framework by information security practitioners.

This research utilized the Design Science Research (DSR) methodology to develop a management-level intervention based on a messaging strategy that aims to help information security practitioners improve the information security …


Redefining Research In Nanotechnology Simulations: A New Approach To Data Caching And Analysis, Darin Tsai, Alan Zhang, Aloysius Rebeiro 2022 Purdue University

Redefining Research In Nanotechnology Simulations: A New Approach To Data Caching And Analysis, Darin Tsai, Alan Zhang, Aloysius Rebeiro

The Journal of Purdue Undergraduate Research

No abstract provided.


Investigating Bloom's Cognitive Skills In Foundation And Advanced Programming Courses From Students' Discussions, Joel Jer Wei LIM, GOTTIPATI Swapna, Kyong Jin SHIM 2022 Singapore Management University

Investigating Bloom's Cognitive Skills In Foundation And Advanced Programming Courses From Students' Discussions, Joel Jer Wei Lim, Gottipati Swapna, Kyong Jin Shim

Research Collection School Of Computing and Information Systems

Programming courses provide students with the skills to develop complex business applications. Teaching and learning programming is challenging, and collaborative learning is proposed to help with this challenge. Online discussion forums promote networking with other learners such that they can build knowledge collaboratively. It aids students open their horizons of thought processes to acquire cognitive skills. Cognitive analysis of discussion is critical to understand students' learning process. In this paper, we propose Bloom's taxonomy based cognitive model for programming discussion forums. We present machine learning (ML) based solution to extract students' cognitive skills. Our evaluations on compupting courses show that …


Morphologically-Aware Vocabulary Reduction Of Word Embeddings, Chong Cher CHIA, Maksim TKACHENKO, Hady Wirawan LAUW 2022 Singapore Management University

Morphologically-Aware Vocabulary Reduction Of Word Embeddings, Chong Cher Chia, Maksim Tkachenko, Hady Wirawan Lauw

Research Collection School Of Computing and Information Systems

We propose SubText, a compression mechanism via vocabulary reduction. The crux is to judiciously select a subset of word embeddings which support the reconstruction of the remaining word embeddings based on their form alone. The proposed algorithm considers the preservation of the original embeddings, as well as a word’s relationship to other words that are morphologically or semantically similar. Comprehensive evaluation of the compressed vocabulary reveals SubText’s efficacy on diverse tasks over traditional vocabulary reduction techniques, as validated on English, as well as a collection of inflected languages.


What Motivates Software Practitioners To Contribute To Inner Source?, Zhiyuan WAN, Xin XIA, Yun ZHANG, David LO, Daibing ZHOU, Qiuyuan CHEN, Ahmed E. HASSAN 2022 Singapore Management University

What Motivates Software Practitioners To Contribute To Inner Source?, Zhiyuan Wan, Xin Xia, Yun Zhang, David Lo, Daibing Zhou, Qiuyuan Chen, Ahmed E. Hassan

Research Collection School Of Computing and Information Systems

Software development organizations have adopted open source development practices to support or augment their software development processes, a phenomenon referred to as inner source. Given the rapid adoption of inner source, we wonder what motivates software practitioners to contribute to inner source projects. We followed a mixed-methods approach--a qualitative phase of interviews with 20 interviewees, followed by a quantitative phase of an exploratory survey with 124 respondents from 13 countries across four continents. Our study uncovers practitioners' motivation to contribute to inner source projects, as well as how the motivation differs from what motivates practitioners to participate in open source …


Complex Knowledge Base Question Answering: A Survey, Yunshi LAN, Gaole HE, Jinhao JIANG, Jing JIANG, Zhao Wayne XIN, Ji Rong WEN 2022 Singapore Management University

Complex Knowledge Base Question Answering: A Survey, Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang, Zhao Wayne Xin, Ji Rong Wen

Research Collection School Of Computing and Information Systems

Knowledge base question answering (KBQA) aims to answer a question over a knowledge base (KB). Early studies mainly focused on answering simple questions over KBs and achieved great success. However, their performances on complex questions are still far from satisfactory. Therefore, in recent years, researchers propose a large number of novel methods, which looked into the challenges of answering complex questions. In this survey, we review recent advances in KBQA with the focus on solving complex questions, which usually contain multiple subjects, express compound relations, or involve numerical operations. In detail, we begin with introducing the complex KBQA task and …


Photovoltaic Cells For Energy Harvesting And Indoor Positioning, Hamada RIZK, Dong MA, Mahbub HASSAN, Moustafa YOUSSEF 2022 Singapore Management University

Photovoltaic Cells For Energy Harvesting And Indoor Positioning, Hamada Rizk, Dong Ma, Mahbub Hassan, Moustafa Youssef

Research Collection School Of Computing and Information Systems

We propose SoLoc, a lightweight probabilistic fingerprinting-based technique for energy-free device-free indoor localization. The system harnesses photovoltaic currents harvested by the photovoltaic cells in smart environments for simultaneously powering digital devices and user positioning. The basic principle is that the location of the human interferes with the lighting received by the photovoltaic cells, thus producing a location fingerprint on the generated photocurrents. To ensure resilience to noisy measurements, SoLoc constructs probability distributions as a photovoltaic fingerprint at each location. Then, we employ a probabilistic graphical model for estimating the user location in the continuous space. Results show that SoLoc can …


Meta-Complementing The Semantics Of Short Texts In Neural Topic Models, Ce ZHANG, Hady Wirawan LAUW 2022 Singapore Management University

Meta-Complementing The Semantics Of Short Texts In Neural Topic Models, Ce Zhang, Hady Wirawan Lauw

Research Collection School Of Computing and Information Systems

Topic models infer latent topic distributions based on observed word co-occurrences in a text corpus. While typically a corpus contains documents of variable lengths, most previous topic models treat documents of different lengths uniformly, assuming that each document is sufficiently informative. However, shorter documents may have only a few word co-occurrences, resulting in inferior topic quality. Some other previous works assume that all documents are short, and leverage external auxiliary data, e.g., pretrained word embeddings and document connectivity. Orthogonal to existing works, we remedy this problem within the corpus itself by proposing a Meta-Complement Topic Model, which improves topic quality …


Vlstereoset: A Study Of Stereotypical Bias In Pre-Trained Vision-Language Models, Kankan ZHOU, Yibin LAI, Jing JIANG 2022 Singapore Management University

Vlstereoset: A Study Of Stereotypical Bias In Pre-Trained Vision-Language Models, Kankan Zhou, Yibin Lai, Jing Jiang

Research Collection School Of Computing and Information Systems

In this paper we study how to measure stereotypical bias in pre-trained vision-language models. We leverage a recently released text-only dataset, StereoSet, which covers a wide range of stereotypical bias, and extend it into a vision-language probing dataset called VLStereoSet to measure stereotypical bias in vision-language models. We analyze the differences between text and image and propose a probing task that detects bias by evaluating a model’s tendency to pick stereotypical statements as captions for anti-stereotypical images. We further define several metrics to measure both a vision-language model’s overall stereotypical bias and its intra-modal and inter-modal bias. Experiments on six …


Text Mining Policy Documents To Support Transboundary Integrated Ecosystem Assessment: The Case Of The South Mid-Atlantic Ridge, Debora Cristina Ferrari Ramalho 2022 World Maritime University

Text Mining Policy Documents To Support Transboundary Integrated Ecosystem Assessment: The Case Of The South Mid-Atlantic Ridge, Debora Cristina Ferrari Ramalho

World Maritime University Dissertations

No abstract provided.


Digital Commons powered by bepress