Open Access. Powered by Scholars. Published by Universities.®

Databases and Information Systems Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 6572

Full-Text Articles in Databases and Information Systems

Unveiling The Dynamics Of Crisis Events: Sentiment And Emotion Analysis Via Multi-Task Learning With Attention Mechanism And Subject-Based Intent Prediction, Phyo Yi Win Myint, Siaw Ling Lo, Yuhao Zhang Jul 2024

Unveiling The Dynamics Of Crisis Events: Sentiment And Emotion Analysis Via Multi-Task Learning With Attention Mechanism And Subject-Based Intent Prediction, Phyo Yi Win Myint, Siaw Ling Lo, Yuhao Zhang

Research Collection School Of Computing and Information Systems

In the age of rapid internet expansion, social media platforms like Twitter have become crucial for sharing information, expressing emotions, and revealing intentions during crisis situations. They offer crisis responders a means to assess public sentiment, attitudes, intentions, and emotional shifts by monitoring crisis-related tweets. To enhance sentiment and emotion classification, we adopt a transformer-based multi-task learning (MTL) approach with attention mechanism, enabling simultaneous handling of both tasks, and capitalizing on task interdependencies. Incorporating attention mechanism allows the model to concentrate on important words that strongly convey sentiment and emotion. We compare three baseline models, and our findings show that …


A Novel Caching Algorithm For Efficient Fine-Grained Access Control In Database Management Systems, Anadi Shakya May 2024

A Novel Caching Algorithm For Efficient Fine-Grained Access Control In Database Management Systems, Anadi Shakya

Student Research Symposium

Fine-grained access Control (FGAC) in DBMS is vital for restricting user access to authorized data and enhancing security. FGAC policies govern how users are granted access to specific resources based on detailed criteria, ensuring security and privacy measures. Traditional methods struggle with scaling policies to thousands, causing delays in query responses. This paper introduces a novel caching algorithm designed to address this challenge by accelerating query processing and ensuring compliance with FGAC policies. In our approach, we create a circular hashmap and employ different replacement techniques to efficiently manage the cache, prioritizing entries that are visited more frequently. To evaluate …


Improving Tattle-Tale K-Deniability, Nicholas G.E. Morales May 2024

Improving Tattle-Tale K-Deniability, Nicholas G.E. Morales

Student Research Symposium

Ensuring privacy for databases is an ongoing struggle. While the majority of work has focused on using access control lists to protect sensitive data these methods are vulnerable to inference attacks. A set of algorithms, referred to as Tattle-Tale, was developed that could protect sensitive data from being inferred however its runtime performance wasn’t suitable for production code. This set of algorithms contained two main subsets, Full Deniability and K-Deniability. My research focused on improving the runtime or utility of the K-Deniability algorithms. I investigated the runtime of the K-Deniability algorithms to identify what was slowing the process down. Aside …


A Little Loud And A Little Alone: A Phenomenology Of Leadership Identity Construction Among Women In Higher Education Technology, Amy Barry May 2024

A Little Loud And A Little Alone: A Phenomenology Of Leadership Identity Construction Among Women In Higher Education Technology, Amy Barry

Department of Teaching, Learning, and Teacher Education: Dissertations, Theses, and Student Research

This qualitative study is an exploration of how women in higher education information technology (IT) positions navigate constructing their leadership identities. This includes the messy, personal, internal identity work that occurs prior to claiming their leadership identities on the public stage, followed by an examination of what the experience of attempting to claim and negotiate a leadership identity is like in the social context of their organizations. This educational and sociological study employs an Interpretative Phenomenological Analysis approach with a series of three interviews per participant that allowed the researcher to deeply explore the personal identity experiences of participants. Findings …


Code For Care: Hypertension Prediction In Women Aged 18-39 Years, Kruti Sheth May 2024

Code For Care: Hypertension Prediction In Women Aged 18-39 Years, Kruti Sheth

Electronic Theses, Projects, and Dissertations

The longstanding prevalence of hypertension, often undiagnosed, poses significant risks of severe chronic and cardiovascular complications if left untreated. This study investigated the causes and underlying risks of hypertension in females aged between 18-39 years. The research questions were: (Q1.) What factors affect the occurrence of hypertension in females aged 18-39 years? (Q2.) What machine learning algorithms are suited for effectively predicting hypertension? (Q3.) How can SHAP values be leveraged to analyze the factors from model outputs? The findings are: (Q1.) Performing Feature selection using binary classification Logistic regression algorithm reveals an array of 30 most influential factors at an …


On The Feasibility Of Simple Transformer For Dynamic Graph Modeling, Yuxia Wu, Yuan Fang, Lizi Liao May 2024

On The Feasibility Of Simple Transformer For Dynamic Graph Modeling, Yuxia Wu, Yuan Fang, Lizi Liao

Research Collection School Of Computing and Information Systems

Dynamic graph modeling is crucial for understanding complex structures in web graphs, spanning applications in social networks, recommender systems, and more. Most existing methods primarily emphasize structural dependencies and their temporal changes. However, these approaches often overlook detailed temporal aspects or struggle with long-term dependencies. Furthermore, many solutions overly complicate the process by emphasizing intricate module designs to capture dynamic evolutions. In this work, we harness the strength of the Transformer’s self-attention mechanism, known for adeptly handling long-range dependencies in sequence modeling. Our approach offers a simple Transformer model, called SimpleDyG, tailored for dynamic graph modeling without complex modifications. We …


An Empirical Study On The Efficacy Of Llm-Powered Chatbots In Basic Information Retrieval Tasks, Naja Faysal May 2024

An Empirical Study On The Efficacy Of Llm-Powered Chatbots In Basic Information Retrieval Tasks, Naja Faysal

Electronic Theses, Projects, and Dissertations

The rise of conversational user interfaces (CUIs) powered by large language models (LLMs) is transforming human-computer interaction. This study evaluates the efficacy of LLM-powered chatbots, trained on website data, compared to browsing websites for finding information about organizations across diverse sectors. A within-subjects experiment with 165 participants was conducted, involving similar information retrieval (IR) tasks using both websites (GUIs) and chatbots (CUIs). The research questions are: (Q1) Which interface helps users find information faster: LLM chatbots or websites? (Q2) Which interface helps users find more accurate information: LLM chatbots or websites?. The findings are: (Q1) Participants found information significantly faster …


The Quantitative Analysis And Visualization Of Nfl Passing Routes, Sandeep Chitturi May 2024

The Quantitative Analysis And Visualization Of Nfl Passing Routes, Sandeep Chitturi

Computer Science and Computer Engineering Undergraduate Honors Theses

The strategic planning of offensive passing plays in the NFL incorporates numerous variables, including defensive coverages, player positioning, historical data, etc. This project develops an application using an analytical framework and an interactive model to simulate and visualize an NFL offense's passing strategy under varying conditions. Using R-programming and data management, the model dynamically represents potential passing routes in response to different defensive schemes. The system architecture integrates data from historical NFL league years to generate quantified route scores through designed mathematical equations. This allows for the prediction of potential passing routes for offensive skill players in response to the …


Deep Learning In Indus Valley Script Digitization, Deva Munikanta Reddy Atturu May 2024

Deep Learning In Indus Valley Script Digitization, Deva Munikanta Reddy Atturu

Theses and Dissertations

This research introduces ASR-net(Ancient Script Recognition), a groundbreaking system that automatically digitizes ancient Indus seals by converting them into coded text, similar to Optical Character Recognition for modern languages. ASR-net, with an 95% success rate in identifying individual symbols, aims to address the crucial need for automated techniques in deciphering the enigmatic Indus script. Initially Yolov3 is utilized to create the bounding boxes around each graphemes present in the Indus Valley Seal. In addition to that we created M-net(Mahadevan) model to encode the graphemes. Beyond digitization, the paper proposes a new research challenge called the Motif Identification Problem (MIP) related …


Quantum Machine Learning For Credit Scoring, Nikolaos Schetakis, Davit Aghamalyan, Micheael Boguslavsky, Agnieszka Rees, Marc Rakotomalala, Paul Robert Griffin May 2024

Quantum Machine Learning For Credit Scoring, Nikolaos Schetakis, Davit Aghamalyan, Micheael Boguslavsky, Agnieszka Rees, Marc Rakotomalala, Paul Robert Griffin

Research Collection School Of Computing and Information Systems

This study investigates the integration of quantum circuits with classical neural networks for enhancing credit scoring for small- and medium-sized enterprises (SMEs). We introduce a hybrid quantum–classical model, focusing on the synergy between quantum and classical rather than comparing the performance of separate quantum and classical models. Our model incorporates a quantum layer into a traditional neural network, achieving notable reductions in training time. We apply this innovative framework to a binary classification task with a proprietary real-world classical credit default dataset for SMEs in Singapore. The results indicate that our hybrid model achieves efficient training, requiring significantly fewer epochs …


Diffusion-Based Negative Sampling On Graphs For Link Prediction, Yuan Fang, Yuan Fang May 2024

Diffusion-Based Negative Sampling On Graphs For Link Prediction, Yuan Fang, Yuan Fang

Research Collection School Of Computing and Information Systems

Link prediction is a fundamental task for graph analysis with important applications on the Web, such as social network analysis and recommendation systems, etc. Modern graph link prediction methods often employ a contrastive approach to learn robust node representations, where negative sampling is pivotal. Typical negative sampling methods aim to retrieve hard examples based on either predefined heuristics or automatic adversarial approaches, which might be inflexible or difficult to control. Furthermore, in the context of link prediction, most previous methods sample negative nodes from existing substructures of the graph, missing out on potentially more optimal samples in the latent space. …


Multigprompt For Multi-Task Pre-Training And Prompting On Graphs, Xingtong Yu, Chang Zhou, Yuan Fang, Xinming Zhan May 2024

Multigprompt For Multi-Task Pre-Training And Prompting On Graphs, Xingtong Yu, Chang Zhou, Yuan Fang, Xinming Zhan

Research Collection School Of Computing and Information Systems

Graph Neural Networks (GNNs) have emerged as a mainstream technique for graph representation learning. However, their efficacy within an end-to-end supervised framework is significantly tied to the availability of task-specific labels. To mitigate labeling costs and enhance robustness in few-shot settings, pre-training on self-supervised tasks has emerged as a promising method, while prompting has been proposed to further narrow the objective gap between pretext and downstream tasks. Although there has been some initial exploration of prompt-based learning on graphs, they primarily leverage a single pretext task, resulting in a limited subset of general knowledge that could be learned from the …


Develop An Interactive Python Dashboard For Analyzing Ezproxy Logs, Andy Huff, Matthew Roth, Weiling Liu Apr 2024

Develop An Interactive Python Dashboard For Analyzing Ezproxy Logs, Andy Huff, Matthew Roth, Weiling Liu

Faculty Scholarship

This paper describes the development of an interactive dashboard in Python with EZproxy log data. Hopefully, this dashboard will help improve the evidence-based decision-making process in electronic resources management and explore the impact of library use.


A Design Science Approach To Investigating Decentralized Identity Technology, Janelle Krupicka Apr 2024

A Design Science Approach To Investigating Decentralized Identity Technology, Janelle Krupicka

Cybersecurity Undergraduate Research Showcase

The internet needs secure forms of identity authentication to function properly, but identity authentication is not a core part of the internet’s architecture. Instead, approaches to identity verification vary, often using centralized stores of identity information that are targets of cyber attacks. Decentralized identity is a secure way to manage identity online that puts users’ identities in their own hands and that has the potential to become a core part of cybersecurity. However, decentralized identity technology is new and continually evolving, which makes implementing this technology in an organizational setting challenging. This paper suggests that, in the future, decentralized identity …


Binder, Tyler A. Peaster, Lindsey M. Davenport, Madelyn Little, Alex Bales Apr 2024

Binder, Tyler A. Peaster, Lindsey M. Davenport, Madelyn Little, Alex Bales

ATU Research Symposium

Binder is a mobile application that aims to introduce readers to a book recommendation service that appeals to devoted and casual readers. The main goal of Binder is to enrich book selection and reading experience. This project was created in response to deficiencies in the mobile space for book suggestions, library management, and reading personalization. The tools we used to create the project include Visual Studio, .Net Maui Framework, C#, XAML, CSS, MongoDB, NoSQL, Git, GitHub, and Figma. The project’s selection of books were sourced from the Google Books repository. Binder aims to provide an intuitive interface that allows users …


Immersive Japanese Language Learning Web Application Using Spaced Repetition, Active Recall, And An Artificial Intelligent Conversational Chat Agent Both In Voice And In Text, Marc Butler Apr 2024

Immersive Japanese Language Learning Web Application Using Spaced Repetition, Active Recall, And An Artificial Intelligent Conversational Chat Agent Both In Voice And In Text, Marc Butler

MS in Computer Science Project Reports

In the last two decades various human language learning applications, spaced repetition software, online dictionaries, and artificial intelligent chat agents have been developed. However, there is no solution to cohesively combine these technologies into a comprehensive language learning application including skills such as speaking, typing, listening, and reading. Our contribution is to provide an immersive language learning web application to the end user which combines spaced repetition, a study technique used to review information at systematic intervals, and active recall, the process of purposely retrieving information from memory during a review session, with an artificial intelligent conversational chat agent both …


What Students Have To Say On Data Privacy For Educational Technology, Stephanie Choi Apr 2024

What Students Have To Say On Data Privacy For Educational Technology, Stephanie Choi

Cybersecurity Undergraduate Research Showcase

The literature on data privacy in terms of educational technology is a growing area of study. The perspective of educators has been captured extensively. However, the literature on students’ perspectives is missing, which is what we explore in this paper. We use a pragmatic qualitative approach with an experiential lens to capture students’ attitudes towards data privacy in terms of educational technology. We identified preliminary, common themes that appeared in the survey responses. The paper concludes by calling for more research on how students perceive data privacy in terms of educational technology.


Artificial Intelligence Could Probably Write This Essay Better Than Me, Claire Martino Apr 2024

Artificial Intelligence Could Probably Write This Essay Better Than Me, Claire Martino

Augustana Center for the Study of Ethics Essay Contest

No abstract provided.


Unearthing The Past: A Comprehensive Study Of Natural And Anthropogenic Changes At An Archaeological Site Through Hydrogeologic Connectivity Utilizing Gis, Mehlich Ii Phosphorus Extractant, And Ph, Dana L. F. Herren Apr 2024

Unearthing The Past: A Comprehensive Study Of Natural And Anthropogenic Changes At An Archaeological Site Through Hydrogeologic Connectivity Utilizing Gis, Mehlich Ii Phosphorus Extractant, And Ph, Dana L. F. Herren

Theses

This thesis aims to thoroughly analyze the Mehlich II Phosphorus Extractant and pH levels at the Bains Gap Village Site in Anniston, AL., while examining the impact of various environmental factors and human activities on them. Phosphorus is often used in archaeology as an indicator of human activity. Soil core samples were collected to analyze anomalies in phosphorus levels.

To establish any relationships, phosphorus and pH levels from soil cores were correlated with findings from past excavation units and features. The potential effects of hydrogeologic connectivity on soil phosphorus and pH levels were investigated. Geospatial technologies were used to manage …


Flgan: Gan-Based Unbiased Federated Learning Under Non-Iid Settings, Zhuoran Ma, Yang Liu, Yinbin Miao, Guowen Xu, Ximeng Liu, Jianfeng Ma, Robert H. Deng Apr 2024

Flgan: Gan-Based Unbiased Federated Learning Under Non-Iid Settings, Zhuoran Ma, Yang Liu, Yinbin Miao, Guowen Xu, Ximeng Liu, Jianfeng Ma, Robert H. Deng

Research Collection School Of Computing and Information Systems

Federated Learning (FL) suffers from low convergence and significant accuracy loss due to local biases caused by non-Independent and Identically Distributed (non-IID) data. To enhance the non-IID FL performance, a straightforward idea is to leverage the Generative Adversarial Network (GAN) to mitigate local biases using synthesized samples. Unfortunately, existing GAN-based solutions have inherent limitations, which do not support non-IID data and even compromise user privacy. To tackle the above issues, we propose a GAN-based unbiased FL scheme, called FlGan, to mitigate local biases using synthesized samples generated by GAN while preserving user-level privacy in the FL setting. Specifically, FlGan first …


Elevating Academic Administration: A Comprehensive Faculty Dashboard For Tracking Student Evaluations And Research, Musa M. Azeem Apr 2024

Elevating Academic Administration: A Comprehensive Faculty Dashboard For Tracking Student Evaluations And Research, Musa M. Azeem

Senior Theses

The USC Faculty Dashboard is a web application designed to revolutionize how department heads, professors, and instructors monitor progress and make decisions, providing a centralized hub for efficient data storage and analysis. Currently, there’s a gap in tools tailored for department heads to concisely manage the performance of their department, which our platform aims to fill. The USC Faculty Dashboard offers easy access to upload and view student evaluation and research information, empowering department heads to evaluate the performance of faculty members and seamlessly track their research grants, publications, and expenditures. Furthermore, professors and instructors gain personalized performance analysis tools, …


Simulated Annealing With Reinforcement Learning For The Set Team Orienteering Problem With Time Windows, Vincent F. Yu, Nabila Y. Salsabila, Shih-W Lin, Aldy Gunawan Mar 2024

Simulated Annealing With Reinforcement Learning For The Set Team Orienteering Problem With Time Windows, Vincent F. Yu, Nabila Y. Salsabila, Shih-W Lin, Aldy Gunawan

Research Collection School Of Computing and Information Systems

This research investigates the Set Team Orienteering Problem with Time Windows (STOPTW), a new variant of the well-known Team Orienteering Problem with Time Windows and Set Orienteering Problem. In the STOPTW, customers are grouped into clusters. Each cluster is associated with a profit attainable when a customer in the cluster is visited within the customer's time window. A Mixed Integer Linear Programming model is formulated for STOPTW to maximizing total profit while adhering to time window constraints. Since STOPTW is an NP-hard problem, a Simulated Annealing with Reinforcement Learning (SARL) algorithm is developed. The proposed SARL incorporates the core concepts …


Meta-Interpretive Learning With Reuse, Rong Wang, Jun Sun, Cong Tian, Zhenhua Duan Mar 2024

Meta-Interpretive Learning With Reuse, Rong Wang, Jun Sun, Cong Tian, Zhenhua Duan

Research Collection School Of Computing and Information Systems

Inductive Logic Programming (ILP) is a research field at the intersection between machine learning and logic programming, focusing on developing a formal framework for inductively learning relational descriptions in the form of logic programs from examples and background knowledge. As an emerging method of ILP, Meta-Interpretive Learning (MIL) leverages the specialization of a set of higher-order metarules to learn logic programs. In MIL, the input includes a set of examples, background knowledge, and a set of metarules, while the output is a logic program. MIL executes a depth-first traversal search, where its program search space expands polynomially with the number …


Non-Monotonic Generation Of Knowledge Paths For Context Understanding, Pei-Chi Lo, Ee-Peng Lim Mar 2024

Non-Monotonic Generation Of Knowledge Paths For Context Understanding, Pei-Chi Lo, Ee-Peng Lim

Research Collection School Of Computing and Information Systems

Knowledge graphs can be used to enhance text search and access by augmenting textual content with relevant background knowledge. While many large knowledge graphs are available, using them to make semantic connections between entities mentioned in the textual content remains to be a difficult task. In this work, we therefore introduce contextual path generation (CPG) which refers to the task of generating knowledge paths, contextual path, to explain the semantic connections between entities mentioned in textual documents with given knowledge graph. To perform CPG task well, one has to address its three challenges, namely path relevance, incomplete knowledge graph, and …


Temporal Implicit Multimodal Networks For Investment And Risk Management, Meng Kiat Gary Ang, Ee-Peng Lim Mar 2024

Temporal Implicit Multimodal Networks For Investment And Risk Management, Meng Kiat Gary Ang, Ee-Peng Lim

Research Collection School Of Computing and Information Systems

Many deep learning works on financial time-series forecasting focus on predicting future prices/returns of individual assets with numerical price-related information for trading, and hence propose models designed for univariate, single-task, and/or unimodal settings. Forecasting for investment and risk management involves multiple tasks in multivariate settings: forecasts of expected returns and risks of assets in portfolios, and correlations between these assets. As different sources/types of time-series influence future returns, risks, and correlations of assets in different ways, it is also important to capture time-series from different modalities. Hence, this article addresses financial time-series forecasting for investment and risk management in a …


Screening Through A Broad Pool: Towards Better Diversity For Lexically Constrained Text Generation, Changsen Yuan, Heyan Huang, Yixin Cao, Qianwen Cao Mar 2024

Screening Through A Broad Pool: Towards Better Diversity For Lexically Constrained Text Generation, Changsen Yuan, Heyan Huang, Yixin Cao, Qianwen Cao

Research Collection School Of Computing and Information Systems

Lexically constrained text generation (CTG) is to generate text that contains given constrained keywords. However, the text diversity of existing models is still unsatisfactory. In this paper, we propose a lightweight dynamic refinement strategy that aims at increasing the randomness of inference to improve generation richness and diversity while maintaining a high level of fluidity and integrity. Our basic idea is to enlarge the number and length of candidate sentences in each iteration, and choose the best for subsequent refinement. On the one hand, different from previous works, which carefully insert one token between two words per action, we insert …


Community Similarity Based On User Profile Joins, Konstantinos Theocharidis, Hady Wirawan Lauw Mar 2024

Community Similarity Based On User Profile Joins, Konstantinos Theocharidis, Hady Wirawan Lauw

Research Collection School Of Computing and Information Systems

Similarity joins on multidimensional data are crucial operators for recommendation purposes. The classic ��-join problem finds all pairs of points within �� distance to each other among two ��-dimensional datasets. In this paper, we consider a novel and alternative version of ��-join named community similarity based on user profile joins (CSJ). The aim of CSJ problem is, given two communities having a set of ��-dimensional users, to find how similar are the communities by matching every single pair of users (a user can be matched with at most one other user) having an absolute difference of at most �� per …


Hypergraphs With Attention On Reviews For Explainable Recommendation, Theis E. Jendal, Trung Hoang Le, Hady Wirawan Lauw, Matteo Lissandrini, Peter Dolog, Katja Hose Mar 2024

Hypergraphs With Attention On Reviews For Explainable Recommendation, Theis E. Jendal, Trung Hoang Le, Hady Wirawan Lauw, Matteo Lissandrini, Peter Dolog, Katja Hose

Research Collection School Of Computing and Information Systems

Given a recommender system based on reviews, the challenges are how to effectively represent the review data and how to explain the produced recommendations. We propose a novel review-specific Hypergraph (HG) model, and further introduce a model-agnostic explainability module. The HG model captures high-order connections between users, items, aspects, and opinions while maintaining information about the review. The explainability module can use the HG model to explain a prediction generated by any model. We propose a path-restricted review-selection method biased by the user preference for item reviews and propose a novel explanation method based on a review graph. Experiments on …


On The Effects Of Information Asymmetry In Digital Currency Trading, Kwansoo Kim, Robert John Kauffman Mar 2024

On The Effects Of Information Asymmetry In Digital Currency Trading, Kwansoo Kim, Robert John Kauffman

Research Collection School Of Computing and Information Systems

We report on two studies that examine how social sentiment influences information asymmetry in digital currency markets. We also assess whether cryptocurrency can be an investment vehicle, as opposed to only an instrument for asset speculation. Using a dataset on transactions from an exchange in South Korea and sentiment from Korean social media in 2018, we conducted a study of different trading behavior under two cryptocurrency trading market microstructures: a bid-ask spread dealer's market and a continuous trading buy-sell, immediate trade execution market. Our results highlight the impacts of positive and negative trader social sentiment valences on the effects of …


T-Sciq: Teaching Multimodal Chain-Of-Thought Reasoning Via Large Language Model Signals For Science Question Answering, Lei Wang, Yi Hu, Jiabang He, Xing Xu, Ning Liu, Hui Liu, Heng Tao Shen Mar 2024

T-Sciq: Teaching Multimodal Chain-Of-Thought Reasoning Via Large Language Model Signals For Science Question Answering, Lei Wang, Yi Hu, Jiabang He, Xing Xu, Ning Liu, Hui Liu, Heng Tao Shen

Research Collection School Of Computing and Information Systems

Large Language Models (LLMs) have recently demonstrated exceptional performance in various Natural Language Processing (NLP) tasks. They have also shown the ability to perform chain-of-thought (CoT) reasoning to solve complex problems. Recent studies have explored CoT reasoning in complex multimodal scenarios, such as the science question answering task, by fine-tuning multimodal models with high-quality human-annotated CoT rationales. However, collecting high-quality COT rationales is usually time-consuming and costly. Besides, the annotated rationales are hardly accurate due to the external essential information missed. To address these issues, we propose a novel method termed T-SciQ that aims at teaching science question answering with …