Open Access. Powered by Scholars. Published by Universities.®

Other Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

662 Full-Text Articles 2,135 Authors 86,674 Downloads 66 Institutions

All Articles in Other Biochemistry, Biophysics, and Structural Biology

Faceted Search

662 full-text articles. Page 4 of 27.

Translational Control Of Antibiotic Resistance, Anne Witzky, Rodney Tollerson II, Michael Ibba 2019 The Ohio State University

Translational Control Of Antibiotic Resistance, Anne Witzky, Rodney Tollerson Ii, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Many antibiotics available in the clinic today directly inhibit bacterial translation. Despite the past success of such drugs, their efficacy is diminishing with the spread of antibiotic resistance. Through the use of ribosomal modifications, ribosomal protection proteins, translation elongation factors and mistranslation, many pathogens are able to establish resistance to common therapeutics. However, current efforts in drug discovery are focused on overcoming these obstacles through the modification or discovery of new treatment options. Here, we provide an overview for common mechanisms of resistance to translation-targeting drugs and summarize several important breakthroughs in recent drug development.


Some Of The Most Interesting Casp11 Targets Through The Eyes Of Their Authors, Andriy Kryshtafovych, John Moult, Arnaud Basle, Alex Burgin, Timonthy K. Craig, Robert A. Edwards, Deborah Fass, Marcus D. Hartmann, Mateusz Korycinski, Richard J. Lewis, Donald Lorimer, Andrei N. Lupas, Janet Newman, Thomas S. Peat, Kurt H. Piepenbrink, Janani Prahlad, Mark J. van Raaij, Forest Rohwer, Anca M. Segall, Victor Seguritan, Eric J. Sundberg, Abhimanyu K. Singh, Mark A. Wilson, Torsten Schwede 2019 University of California, Davis

Some Of The Most Interesting Casp11 Targets Through The Eyes Of Their Authors, Andriy Kryshtafovych, John Moult, Arnaud Basle, Alex Burgin, Timonthy K. Craig, Robert A. Edwards, Deborah Fass, Marcus D. Hartmann, Mateusz Korycinski, Richard J. Lewis, Donald Lorimer, Andrei N. Lupas, Janet Newman, Thomas S. Peat, Kurt H. Piepenbrink, Janani Prahlad, Mark J. Van Raaij, Forest Rohwer, Anca M. Segall, Victor Seguritan, Eric J. Sundberg, Abhimanyu K. Singh, Mark A. Wilson, Torsten Schwede

Kurt Piepenbrink

The Critical Assessment of protein Structure Prediction (CASP) experiment would not have been possible without the prediction targets provided by the experimental structural biology community. In this article, selected crystallographers providing targets for the CASP11 experiment discuss the functional and biological significance of the target proteins, highlight their most interesting structural features, and assess whether these features were correctly reproduced in the predictions submitted to CASP11.


Dna Uptake By Type Iv Filaments, Kurt H. Piepenbrink 2019 University of Nebraska - Lincoln

Dna Uptake By Type Iv Filaments, Kurt H. Piepenbrink

Kurt Piepenbrink

Bacterial uptake of DNA through type IV filaments is an essential component of natural competence in numerous gram-positive and gram-negative species. Recent advances in the field have broadened our understanding of the structures used to take up extracellular DNA. Here, we review seminal experiments in the literature describing DNA binding by type IV pili, competence pili and the flp pili of Micrococcus luteus; collectively referred to here as type IV filaments. We compare the current state of the field on mechanisms of DNA uptake for these three appendage systems and describe the current mechanistic understanding of both DNA-binding and DNA-uptake ...


Role Of The Drosophila Beaf Protein In Chromatin Domain Insulator And Promoter Function, Mukesh Maharjan 2019 Louisiana State University and Agricultural and Mechanical College

Role Of The Drosophila Beaf Protein In Chromatin Domain Insulator And Promoter Function, Mukesh Maharjan

LSU Doctoral Dissertations

Proper folding of eukaryotic genomes is required to allow correct interactions between different parts of chromosomes. Precise and timely interactions among different parts of a chromosome allow proper functioning inside a nucleus, including gene regulation, DNA replication and DNA repair. Eukaryotic regulatory elements that facilitate folding and interactions include enhancers, promoters and insulator elements. Insulator elements and their binding proteins play an important role in regulating correct chromatin structure and function. The Drosophila melanogaster special chromatin structure (scs’) is one such insulator. The Boundary Element Associated Factor (BEAF) binds to scs’. BEAF is a 32 kDa protein that has two ...


Experimental Evidence Supportive Of The Quantum Dna Model, F. Matthew Mihelic 2019 University of Tennessee Health Science Center

Experimental Evidence Supportive Of The Quantum Dna Model, F. Matthew Mihelic

Faculty Publications

The DNA molecule can be modeled as a quantum logic processor in which electron spin qubits are held coherently in each nucleotide in a logically and thermodynamically reversible enantiomeric symmetry, and can be coherently conducted along the pi-stacking interactions of aromatic nucleotide bases, while simultaneously being spin-filtered via the helicity of the DNA molecule. Entangled electron pairs can be separated by that spin-filtering, held coherently at biological temperatures in the topologically insulated nucleotide quantum gates, and incorporated into separate DNA strands during DNA replication. Two separate DNA strands that share quantum entangled electrons can be mitotically divided into individual cells ...


Dom Control Of Mercury Methylation In The Water Column Of A Meromictic Lake, Madalyn Bozinski 2019 Syracuse University

Dom Control Of Mercury Methylation In The Water Column Of A Meromictic Lake, Madalyn Bozinski

Syracuse University Honors Program Capstone Projects

The trophic transfer and bioaccumulation of methyl mercury (MeHg) in aquatic ecosystems is a substantial concern, resulting in fish consumption advisories worldwide. Aquatic ecosystems have been identified as the critical environments that breed production of MeHg and low levels of initial accumulation in biota. MeHg production is a microbially-mediated process, occurring primarily at the transition between oxic and anoxic environments. This research aimed to assess the extent to which dissolved organic matter (DOM) affects methylation of mercury in the oligotrophic meromictic lake, Green Lake, in Fayetteville, NY and the warm monomictic lake, Seneca Lake, in Geneva, NY. General physical parameters ...


The Effects Of Eicosapentaenoic Acid (Epa) And Docosahexaenoic Acid (Dha) On Brown Adipogenesis In Stem Cell Culture, Darynne Dahlem 2019 University of Arkansas, Fayetteville

The Effects Of Eicosapentaenoic Acid (Epa) And Docosahexaenoic Acid (Dha) On Brown Adipogenesis In Stem Cell Culture, Darynne Dahlem

Animal Science Undergraduate Honors Theses

Polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are major maternal dietary supplements due to their positive benefits on neurological tissue growth during the first 12 weeks of gestation. Previous studies show that EPA and DHA inhibit muscle formation but promote adipogenesis. However, no research has addressed the question whether high intake of EPA and DHA affects brown fat development during gestation. The objective of this study was to measure the effect of EPA and DHA supplement on brown adipogenesis and potential pathways related to mitochondrial biosynthesis using fibroblasts as in vitro model. Using Oil-Red-O staining ...


Arabinose Substitution Effect On Xylan Rigidity And Self-Aggregation, Utsab Shrestha, Sydney Smith, Sai Venkatesh Pingali, Hui Yang, Mai Zahran, Llyod Breunig, Liza Wilson, Daniel Cosgrove, Hugh O'Neill, Loukas Petridis 2019 Oak Ridge National Laboratory

Arabinose Substitution Effect On Xylan Rigidity And Self-Aggregation, Utsab Shrestha, Sydney Smith, Sai Venkatesh Pingali, Hui Yang, Mai Zahran, Llyod Breunig, Liza Wilson, Daniel Cosgrove, Hugh O'Neill, Loukas Petridis

Publications and Research

Substituted xylans play an important role in the structure and mechanics of the primary cell wall of plants. Arabinoxylans (AX) consist of a xylose backbone substituted with arabinose, while glucuronoarabinoxylans (GAX) also contain glucuronic acid substitutions and ferulic acid esters on some of the arabinoses. We provide a molecular-level description on the dependence of xylan conformational, selfaggregation properties and binding to cellulose on the degree of arabinose substitution. Molecular dynamics simulations reveal fully solubilized xylans with a low degree of arabinose substitution (lsAX) to be stiffer than their highly substituted (hsAX) counterparts. Small-angle neutron scattering experiments indicate that both wild-type ...


Allosteric Mechanism Of The Circadian Protein Vivid Resolved Through Markov State Model And Machine Learning Analysis, Hongyu Zhou, Zheng Dong, Gennady M. Verkhivker, Brian D. Zoltowski, Peng Tao 2019 Southern Methodist University

Allosteric Mechanism Of The Circadian Protein Vivid Resolved Through Markov State Model And Machine Learning Analysis, Hongyu Zhou, Zheng Dong, Gennady M. Verkhivker, Brian D. Zoltowski, Peng Tao

Mathematics, Physics, and Computer Science Faculty Articles and Research

The fungal circadian clock photoreceptor Vivid (VVD) contains a photosensitive allosteric light, oxygen, voltage (LOV) domain that undergoes a large N-terminal conformational change. The mechanism by which a blue-light driven covalent bond formation leads to a global conformational change remains unclear, which hinders the further development of VVD as an optogenetic tool. We answered this question through a novel computational platform integrating Markov state models, machine learning methods, and newly developed community analysis algorithms. Applying this new integrative approach, we provided a quantitative evaluation of the contribution from the covalent bond to the protein global conformational change, and proposed an ...


Cloning The Vision Related G Protein Transducin For Live Cell Fluorescence Studies, Deanna M. Bowman 2019 The University of Akron

Cloning The Vision Related G Protein Transducin For Live Cell Fluorescence Studies, Deanna M. Bowman

Williams Honors College, Honors Research Projects

G coupled protein receptors (GCPR) are one of the largest families of receptors and mediate a variety of biological responses. Rhodopsin is the largest family and aids in sight, the α-subunit of the GCPR complex in extremely important to the activation and downstream signaling effects of GCPR. The α-subunit contains a small trans-domain portion and in this project the sequence of that portion will be inserted into a vector containing a fluorescent tag. These vectors will then be used to collect fluorescent cross correlation spectroscopy or FCCS data. The unit was cloned using assembly methods that include PCR and purification ...


Targeted-Ion Mass Spectrometry For The Identification Of Forensically Relevant Biological Fluids And Samples From Sexual Assault Evidence, Heather Erin McKiernan 2019 University of Denver

Targeted-Ion Mass Spectrometry For The Identification Of Forensically Relevant Biological Fluids And Samples From Sexual Assault Evidence, Heather Erin Mckiernan

Electronic Theses and Dissertations

Forensic practitioners have long sought efficient and reliable means for identifying those samples that are best suited for successful genetic profiling. Traditional serological screening methodologies rely upon enzyme activity and antibody-based serological tests. These tests can be consumptive, laborious and costly while reliance on antibody-based serological testing can be prone to error. Positive results resulting from non-target biological fluids, the potential for cross- reactivity and non-specific binding events yield merely presumptive results. This has led forensic biologists to omit serological testing, at least in the case of sexual assault kit samples, in favor of Y-Screen assays. While these Y-Screen approaches ...


Downregulation Of A Cyp74 Rubber Particle Protein Increases Natural Rubber Production In Parthenium Argentatum, Dante F. Placido, Niu Dong, Chen Dong, Von Mark V. Cruz, David A. Dierig, Rebecca E. Cahoon, Byung-guk Kang, Trinh Huynh, Maureen Whalen, Grisel Ponciano, Colleen McMahan 2019 USDA, Agricultural Research Service

Downregulation Of A Cyp74 Rubber Particle Protein Increases Natural Rubber Production In Parthenium Argentatum, Dante F. Placido, Niu Dong, Chen Dong, Von Mark V. Cruz, David A. Dierig, Rebecca E. Cahoon, Byung-Guk Kang, Trinh Huynh, Maureen Whalen, Grisel Ponciano, Colleen Mcmahan

Biochemistry -- Faculty Publications

We report functional genomics studies of a CYP74 rubber particle protein from Parthenium argentatum, commonly called guayule. Previously identified as an allene oxide synthase (AOS), this CYP74 constitutes the most abundant protein found in guayule rubber particles. Transgenic guayule lines with AOS gene expression down-regulated by RNAi (AOSi) exhibited strong phenotypes that included agricultural traits conducive to enhancing rubber yield. AOSi lines had higher leaf and stem biomass, thicker stembark tissues, increased stem branching and improved net photosynthetic rate. Importantly, the rubber content was significantly increased in AOSi lines compared to the wild-type (WT), vector control and AOS overexpressing (AOSoe ...


The Mitochondrial Nad+ Transporter (Ndt1) Plays Important Roles In Cellular Nad+ Homeostasis In Arabidopsis Thaliana, Izabel de Souza Chaves, Elias Feitosa-Araujo, Alexandra Florian, David B. Medeiros, Paula da Fonseca-Pereira, Lennart Charton, Elmien Heyneke, Jorge A. C. Apfata, Marcel V. Pires, Tabea Mettler-Altmann, Wagner L. Arajuo, H. Ekkehard Neuhaus, Ferdinando Palmieri, Toshihiro Obata, Andreas P. M. Weber, Nicole Linka, Alisdair R. Femie, Adriano Nunes-Nesi 2019 Universidade Federal de Vicosa

The Mitochondrial Nad+ Transporter (Ndt1) Plays Important Roles In Cellular Nad+ Homeostasis In Arabidopsis Thaliana, Izabel De Souza Chaves, Elias Feitosa-Araujo, Alexandra Florian, David B. Medeiros, Paula Da Fonseca-Pereira, Lennart Charton, Elmien Heyneke, Jorge A. C. Apfata, Marcel V. Pires, Tabea Mettler-Altmann, Wagner L. Arajuo, H. Ekkehard Neuhaus, Ferdinando Palmieri, Toshihiro Obata, Andreas P. M. Weber, Nicole Linka, Alisdair R. Femie, Adriano Nunes-Nesi

Biochemistry -- Faculty Publications

Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme required for all living organisms. In eukaryotic cells, the final step of NAD+ biosynthesis is exclusively cytosolic. Hence, NAD+ must be imported into organelles to support their metabolic functions. Three NAD+ transporters belonging to the mitochondrial carrier family (MCF) have been biochemically characterized in plants. AtNDT1 (At2g47490), focus of the current study, AtNDT2 (At1g25380), targeted to the inner mitochondrial membrane, and AtPXN (At2g39970), located in the peroxisomal membrane. Although AtNDT1 was presumed to reside in the chloroplast membrane, subcellular localization experiments with green fluorescent protein ...


Reintegrating Biology Through The Nexus Of Information And Energy, Kim L. Hoke, Sara L. Zimmer, Mary Jo Ondrechen, Amedee des Georges, Adam B. Roddy, Nicole R. Buan, Craig E. Williamson 2019 Colorado State University - Fort Collins

Reintegrating Biology Through The Nexus Of Information And Energy, Kim L. Hoke, Sara L. Zimmer, Mary Jo Ondrechen, Amedee Des Georges, Adam B. Roddy, Nicole R. Buan, Craig E. Williamson

Biochemistry -- Faculty Publications

Recent rapid advances in biology have led to diversification and sub-specialization of many fields, as well as a corresponding explosion of new findings. Advances in tools ranging from genomic techniques and high-resolution imaging to automated ecosystem- and biosphere-level sensors, along with correspondingly advanced analytics, have led to critical new insights that are transforming our understanding of biological systems. One of the consequences of these rapid advances has been accelerated splintering of biology into sub-disciplines with highly focused questions, vocabulary, and techniques. This splintering creates barriers to synergy across fields of biology and hinders the insights that could be gained at ...


Trade-Offs Shape Carotenoid-Based Color Variation In Redheaded Pine Sawfly (Neodiprion Lecontei) Larvae, Maranda Gaines 2019 University of Kentucky

Trade-Offs Shape Carotenoid-Based Color Variation In Redheaded Pine Sawfly (Neodiprion Lecontei) Larvae, Maranda Gaines

Lewis Honors College Capstone Collection

Carotenoids serve various ecological roles in animals including coloration, immune responses, and vision. Carotenoid-derived coloration is greatly emphasized in the literature, particularly relating to mate choice and aposematic warning. However, the trade-offs between the color and non-color functions of carotenoids are not thoroughly explored. In the redheaded pine sawfly (Neodiprion lecontei), some larval populations have yellow pigmentation, using carotenoids derived from their diets for aposematic warning coloration. Other larval populations are white in color, having genetically lost the ability to produce the yellow pigment. Because carotenoids are essential to life functions in both the yellow and white populations, we aim ...


Visualizing The Invisible: A Guide To Designing, Printing, And Incorporating Dynamic 3d Molecular Models To Teach Structure–Function Relationships, Michelle Howell, Karin van Dijk, Christine S. Booth, Tomáš Helikar, Brain A. Couch, Rebecca Roston 2019 University of Nebraska - Lincoln

Visualizing The Invisible: A Guide To Designing, Printing, And Incorporating Dynamic 3d Molecular Models To Teach Structure–Function Relationships, Michelle Howell, Karin Van Dijk, Christine S. Booth, Tomáš Helikar, Brain A. Couch, Rebecca Roston

Biochemistry -- Faculty Publications

Understanding the intricate relationship between macromolecular structure and function represents a central goal of undergraduate biology education (1–3). In teaching complex three-dimensional (3D) concepts, instructors typically depend on static two-dimensional (2D) textbook images or computer-based visualization software, which can lead to unintended misconceptions (4–6). While chemical and molecular kits exist, these models cannot handle the size and detail of macromolecules. Consequently, students may graduate in the life sciences without understanding how structure underlies function or acquiring skills to translate between 2D and 3D molecular models (5, 7). Building on recent technological advances, 3D printing (3DP) potentiates an era ...


Dna Uptake By Type Iv Filaments, Kurt H. Piepenbrink 2019 University of Nebraska - Lincoln

Dna Uptake By Type Iv Filaments, Kurt H. Piepenbrink

Biochemistry -- Faculty Publications

Bacterial uptake of DNA through type IV filaments is an essential component of natural competence in numerous gram-positive and gram-negative species. Recent advances in the field have broadened our understanding of the structures used to take up extracellular DNA. Here, we review seminal experiments in the literature describing DNA binding by type IV pili, competence pili and the flp pili of Micrococcus luteus; collectively referred to here as type IV filaments. We compare the current state of the field on mechanisms of DNA uptake for these three appendage systems and describe the current mechanistic understanding of both DNA-binding and DNA-uptake ...


Autophagy In Adipocyte Browning: Emerging Drug Target For Intervention In Obesity, Seung-Hyun Ro, Yura Jang, Jiyoung Bae, Isaac M. Kim, Cameron Schaecher, Zachery D. Shomo 2019 University of Nebraska-Lincoln

Autophagy In Adipocyte Browning: Emerging Drug Target For Intervention In Obesity, Seung-Hyun Ro, Yura Jang, Jiyoung Bae, Isaac M. Kim, Cameron Schaecher, Zachery D. Shomo

Biochemistry -- Faculty Publications

Autophagy, lipophagy, and mitophagy are considered to be the major recycling processes for protein aggregates, excess fat, and damaged mitochondria in adipose tissues in response to nutrient status-associated stress, oxidative stress, and genotoxic stress in the human body. Obesity with increased body weight is often associated with white adipose tissue (WAT) hypertrophy and hyperplasia and/or beige/brown adipose tissue atrophy and aplasia, which significantly contribute to the imbalance in lipid metabolism, adipocytokine secretion, free fatty acid release, and mitochondria function. In recent studies, hyperactive autophagy in WAT was observed in obese and diabetic patients, and inhibition of adipose autophagy ...


Ligand Binding And Signaling Of Hare/Stabilin-2, Edward N. Harris, Fatima Cabral 2019 University of Nebraska - Lincoln

Ligand Binding And Signaling Of Hare/Stabilin-2, Edward N. Harris, Fatima Cabral

Biochemistry -- Faculty Publications

The Stabilin receptors are a two-member family in the type H class of scavenger receptors. These dynamic receptors bind and internalize multiple ligands from the cell surface for the purpose of clearing extracellular material including some synthetic drugs and for sensing the external environment of the cell. Stabilin-1 was the first receptor to be cloned, though the biological activity of Hyaluronic Acid Receptor for Endocytosis (HARE)/Stabilin-2 was observed about 10 years prior to the cloning of Stabilin-1. Stabilin-1 has a more diverse expression profile among the tissues than HARE/Stabilin-2. This review will focus on HARE/Stabilin-2 and its ...


Student Understanding Of Dna Structure–Function Relationships Improves From Using 3d Learning Modules With Dynamic 3d Printed Models, Michelle E. Howell, Christine S. Booth, Sharmin M. Sikich, Tomáš Helikar, Rebecca Roston, Brain A. Couch, Karin van Dijk 2019 University of Nebraska-Lincoln

Student Understanding Of Dna Structure–Function Relationships Improves From Using 3d Learning Modules With Dynamic 3d Printed Models, Michelle E. Howell, Christine S. Booth, Sharmin M. Sikich, Tomáš Helikar, Rebecca Roston, Brain A. Couch, Karin Van Dijk

Biochemistry -- Faculty Publications

Understanding the relationship between molecular structure and function represents an important goal of undergraduate life sciences. Although evidence suggests that handling physical models supports gains in student understanding of structure–function relationships, such models have not been widely implemented in biochemistry classrooms. Three-dimensional (3D) printing represents an emerging cost-effective means of producing molecular models to help students investigate structure–function concepts. We developed three interactive learning modules with dynamic 3D printed models to help biochemistry students visualize biomolecular structures and address particular misconceptions. These modules targeted specific learning objectives related to DNA and RNA structure, transcription factor-DNA interactions, and DNA ...


Digital Commons powered by bepress