Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 662

Full-Text Articles in Other Biochemistry, Biophysics, and Structural Biology

Integrative Computational Approach Identifies Drug Targets In Cd4+ T-Cell-Mediated Immune Disorders, Bhanwar L. Puniya, Rada Amin, Bailee Lichter, Robert Moore, Alex Ciurej, Sydney J. Bennett, Ab Rauf Shah, Matteo Barberis, Tomáš Helikar May 2021

Integrative Computational Approach Identifies Drug Targets In Cd4+ T-Cell-Mediated Immune Disorders, Bhanwar L. Puniya, Rada Amin, Bailee Lichter, Robert Moore, Alex Ciurej, Sydney J. Bennett, Ab Rauf Shah, Matteo Barberis, Tomáš Helikar

Biochemistry -- Faculty Publications

CD4+ T cells provide adaptive immunity against pathogens and abnormal cells, and they are also associated with various immunerelated diseases. CD4+ T cells’ metabolism is dysregulated in these pathologies and represents an opportunity for drug discovery and development. Genome-scale metabolic modeling offers an opportunity to accelerate drug discovery by providing high-quality information about possible target space in the context of a modeled disease. Here, we develop genome-scale models of naïve, Th1, Th2, and Th17 CD4+ T-cell subtypes to map metabolic perturbations in rheumatoid arthritis, multiple sclerosis, and primary biliary cholangitis. We subjected these models to in silico simulations for drug ...


Isoprene Production From Municipal Wastewater Biosolids By Engineered Archaeon Methanosarcina Acetivorans, Sean Carr, Jared Aldridge, Nicole R. Buan Apr 2021

Isoprene Production From Municipal Wastewater Biosolids By Engineered Archaeon Methanosarcina Acetivorans, Sean Carr, Jared Aldridge, Nicole R. Buan

Biochemistry -- Faculty Publications

Wastewater biosolids are a promising feedstock for production of value-added renewable chemicals. Methane-producing archaea (methanogens) are already used to produce renewable biogas via the anaerobic treatment of wastewater. The ability of methanogens to efficiently convert dissolved organic carbon into methane makes them an appealing potential platform for biorefining using metabolic engineering. We have engineered a strain of the methanogen Methanosarcina acetivorans to produce the volatile hemiterpene isoprene in addition to methane. The engineered strain was adapted to grow in municipal wastewater through cultivation in a synthetic wastewater medium. When introduced to municipal wastewater the engineered methanogens were able to compete ...


Structural Basis For Clostridium Perfringens Enterotoxin Targeting Of Claudins At Tight Junctions In Mammalian Gut, Alex J. Vecchio, Sewwandi S. Rathnayake, Robert M. Stroud Apr 2021

Structural Basis For Clostridium Perfringens Enterotoxin Targeting Of Claudins At Tight Junctions In Mammalian Gut, Alex J. Vecchio, Sewwandi S. Rathnayake, Robert M. Stroud

Biochemistry -- Faculty Publications

The bacterium Clostridium perfringens causes severe, sometimes lethal gastrointestinal disorders in humans, including enteritis and enterotoxemia. Type F strains produce an enterotoxin (CpE) that causes the third most common foodborne illness in the United States. CpE induces gut breakdown by disrupting barriers at cell–cell contacts called tight junctions (TJs), which are formed and maintained by claudins. Targeted binding of CpE to specific claudins, encoded by its C-terminal domain (cCpE), loosens TJ barriers to trigger molecular leaks between cells. Cytotoxicity results from claudin-bound CpE complexes forming pores in cell membranes. In mammalian tissues, ∼24 claudins govern TJ barriers—but the ...


A Co-Opted Steroid Synthesis Gene, Maintained In Sorghum But Not Maize, Is Associated With A Divergence In Leaf Wax Chemistry, Lucas Busta, Elizabeth Schmitz, Dylan K. Kosma, James Schnable, Edgar B. Cahoon Mar 2021

A Co-Opted Steroid Synthesis Gene, Maintained In Sorghum But Not Maize, Is Associated With A Divergence In Leaf Wax Chemistry, Lucas Busta, Elizabeth Schmitz, Dylan K. Kosma, James Schnable, Edgar B. Cahoon

Biochemistry -- Faculty Publications

Virtually all land plants are coated in a cuticle, a waxy polyester that prevents nonstomatal water loss and is important for heat and drought tolerance. Here, we describe a likely genetic basis for a divergence in cuticular wax chemistry between Sorghum bicolor, a drought tolerant crop widely cultivated in hot climates, and its close relative Zea mays (maize). Combining chemical analyses, heterologous expression, and comparative genomics, we reveal that: 1) sorghum and maize leaf waxes are similar at the juvenile stage but, after the juvenile-to-adult transition, sorghum leaf waxes are rich in triterpenoids that are absent from maize; 2) biosynthesis ...


Cown Sustains Nitrogenase Turnover In The Presence Of The Inhibitor Carbon Monoxide, Michael S. Medina, Kevin O. Bretzing, Richard A. Aviles, Kiersten M. Chong, Alejandro Espinoza, Chloe Nicole G. Garcia, Benjamin B. Katz, Ruchita N. Kharwa, Andrea Hernandez, Justin L. Lee, Terrence M. Lee, Christine Lo Verde, Max W. Strul, Emily Y. Wong, Cedric P. Owens Mar 2021

Cown Sustains Nitrogenase Turnover In The Presence Of The Inhibitor Carbon Monoxide, Michael S. Medina, Kevin O. Bretzing, Richard A. Aviles, Kiersten M. Chong, Alejandro Espinoza, Chloe Nicole G. Garcia, Benjamin B. Katz, Ruchita N. Kharwa, Andrea Hernandez, Justin L. Lee, Terrence M. Lee, Christine Lo Verde, Max W. Strul, Emily Y. Wong, Cedric P. Owens

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Nitrogenase is the only enzyme capable of catalyzing nitrogen fixation, the reduction of dinitrogen gas (N2) to ammonia (NH3). Nitrogenase is tightly inhibited by the environmental gas carbon monoxide (CO). Nitrogen-fixing bacteria rely on the protein CowN to grow in the presence of CO. However, the mechanism by which CowN operates is unknown. Here, we present the biochemical characterization of CowN and examine how CowN protects nitrogenase from CO. We determine that CowN interacts directly with nitrogenase and that CowN protection observes hyperbolic kinetics with respect to CowN concentration. At a CO concentration of 0.001 atm, CowN ...


Long Non-Coding Rna Meg3 Deficiency Impairs Glucose Homeostasis And Insulin Signaling By Inducing Cellular Senescence Of Hepatic Endothelium In Obesity, Xiao Cheng, Mohamed Sham Shihabudeen Haider Ali, Matthew Moran, Martonio Ponte Viana, Sarah L. Schlichte, Matthew C. Zimmerman, Oleh Khalimonchuk, Mark W. Feinberg, Xinghui Sun Jan 2021

Long Non-Coding Rna Meg3 Deficiency Impairs Glucose Homeostasis And Insulin Signaling By Inducing Cellular Senescence Of Hepatic Endothelium In Obesity, Xiao Cheng, Mohamed Sham Shihabudeen Haider Ali, Matthew Moran, Martonio Ponte Viana, Sarah L. Schlichte, Matthew C. Zimmerman, Oleh Khalimonchuk, Mark W. Feinberg, Xinghui Sun

Biochemistry -- Faculty Publications

Obesity-induced insulin resistance is a risk factor for diabetes and cardiovascular disease. However, the mechanisms underlying endothelial senescence in obesity, and how it impacts obesity-induced insulin resistance remain incompletely understood. In this study, transcriptome analysis revealed that the long non-coding RNA (lncRNA) Maternally expressed gene 3 (Meg3) is one of the top differentially expressed lncRNAs in the vascular endothelium in diet-induced obese mice. Meg3 knockdown induces cellular senescence of endothelial cells characterized by increased senescence-associated β–galactosidase activity, increased levels of endogenous superoxide, impaired mitochondrial structure and function, and impaired autophagy. Moreover, Meg3 knockdown causes cellular senescence of hepatic endothelium ...


Teaching Metabolism In Upper-Division Undergraduate Biochemistry Courses Using Online Computational Systems And Dynamical Models Improves Student Performance, Christine S. Booth, Changsoo Song, Michelle E. Howell, Achilles Rasquinha, Aleš Saska, Resa M. Helikar, Sharmin M. Sikich, Brain A. Couch, Karin Van Dijk, Rebecca Roston, Tomáš Helikar Jan 2021

Teaching Metabolism In Upper-Division Undergraduate Biochemistry Courses Using Online Computational Systems And Dynamical Models Improves Student Performance, Christine S. Booth, Changsoo Song, Michelle E. Howell, Achilles Rasquinha, Aleš Saska, Resa M. Helikar, Sharmin M. Sikich, Brain A. Couch, Karin Van Dijk, Rebecca Roston, Tomáš Helikar

Biochemistry -- Faculty Publications

Understanding metabolic function requires knowledge of the dynamics, interdependence, and regulation of metabolic networks. However, multiple professional societies have recognized that most undergraduate biochemistry students acquire only a surface-level understanding of metabolism. We hypothesized that guiding students through interactive computer simulations of metabolic systems would increase their ability to recognize how individual interactions between components affect the behavior of a system under different conditions. The computer simulations were designed with an interactive activity (i.e., module) that used the predict–observe–explain model of instruction to guide students through a process in which they iteratively predict outcomes, test their predictions ...


The Need For Research-Grade Systems Modeling Technologies For Life Science Education, Tomáš Helikar Jan 2021

The Need For Research-Grade Systems Modeling Technologies For Life Science Education, Tomáš Helikar

Biochemistry -- Faculty Publications

The coronavirus disease 2019 (COVID-19) pandemic not only challenged deeply-rooted daily patterns but also put a spotlight on the role of computational modeling in science and society. Amid the impromptu upheaval of in-person education across the world, this article aims to articulate the need to train students in computational and systems biology using research-grade technologies. ...

Life sciences education needs multiple technical infrastructures explicitly designed to support this field’s vast computational needs. Developing and sustaining effective, scientifically authentic educational technologies is not easy. It requires expertise in software development and the scientific domain as well as in education and education ...


Fine-Tuning Of Alanyl-Trna Synthetase Quality Control Alleviates Global Dysregulation Of The Proteome, Paul Kelly, Arundhati Kavoor, Michael Ibba Oct 2020

Fine-Tuning Of Alanyl-Trna Synthetase Quality Control Alleviates Global Dysregulation Of The Proteome, Paul Kelly, Arundhati Kavoor, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

One integral step in the transition from a nucleic acid encoded-genome to functional proteins is the aminoacylation of tRNA molecules. To perform this activity, aminoacyl-tRNA synthetases (aaRSs) activate free amino acids in the cell forming an aminoacyl-adenylate before transferring the amino acid on to its cognate tRNA. These newly formed aminoacyl-tRNA (aa-tRNA) can then be used by the ribosome during mRNA decoding. In Escherichia coli, there are twenty aaRSs encoded in the genome, each of which corresponds to one of the twenty proteinogenic amino acids used in translation. Given the shared chemicophysical properties of many amino acids, aaRSs have evolved ...


Changes In Lipid Profiles Of Epileptic Mouse Mode, Alicia Johnson, Ryan A. Grove, Deepak Madhavan, Cory H.T. Boone, Camila Pereira Braga, Hannah Kyllo, Kaeli K. Samson, Kristina A. Simeone, Timothy A. Simeone, Tomáš Helikar, Corrine K. Hanson, Jiri Adamec Oct 2020

Changes In Lipid Profiles Of Epileptic Mouse Mode, Alicia Johnson, Ryan A. Grove, Deepak Madhavan, Cory H.T. Boone, Camila Pereira Braga, Hannah Kyllo, Kaeli K. Samson, Kristina A. Simeone, Timothy A. Simeone, Tomáš Helikar, Corrine K. Hanson, Jiri Adamec

Biochemistry -- Faculty Publications

Introduction Approximately 1% of the world’s population is impacted by epilepsy, a chronic neurological disorder characterized by seizures. One-third of epileptic patients are resistant to AEDs, or have medically refractory epilepsy (MRE). One non-invasive treatment that exists for MRE includes the ketogenic diet (KD), a high-fat, low-carbohydrate diet. Despite the KD’s success in seizure attenuation, it has a few risks and its mechanisms remain poorly understood. The KD has been shown to improve metabolism and mitochondrial function in epileptic phenotypes. Potassium channels have implications in epileptic conditions as they have dual roles as metabolic sensors and control neuronal ...


Two And Three-Dimensional Radiographic Imaging Of Contrast Agents In Heterogeneous Live Cell Media To Understand Contrast-Induced Toxicity, Fahaneda Hassan, Aldona Gjoni, Subhendra Sarkar Oct 2020

Two And Three-Dimensional Radiographic Imaging Of Contrast Agents In Heterogeneous Live Cell Media To Understand Contrast-Induced Toxicity, Fahaneda Hassan, Aldona Gjoni, Subhendra Sarkar

Publications and Research

Radiographic imaging was done using low and high energy radiography equipment. The test hypothesis that macromolecular aggregation changes sample noise in imaging samples for optical imaging methods. Inorganic complexes scatter radiation at the molecular level and may increase the sample noise locally. At high and low photon energies in various x-ray machines, sample and background noise were gathered and compared with those from mammography systems from mammography researchers. The samples with high macromolecular aggregates were prepared using various animal cell compositions and imaged under different conditions that produced different macromolecular dynamics within the samples and thus different image-based sample noise ...


Investigating Photosynthetic Stability: Relation Between Thylakoid Lipid Content And The Stability Of The Cytochrome B6f Complex, Marina Mehling Aug 2020

Investigating Photosynthetic Stability: Relation Between Thylakoid Lipid Content And The Stability Of The Cytochrome B6f Complex, Marina Mehling

The Journal of Purdue Undergraduate Research

The cytochrome b6f complex is an enzyme found in plants, cyanobacteria, and green algae that catalyzes the transport of electrons in the rate-limiting step of oxygenic photosynthesis. This dimeric complex has an extensive lipid architecture that is primarily composed of five distinct lipid classes: monogalactosyl diacylglycerol (MGDG), digalactosyl diacylglycerol (DGDG), phosphatidyl glycerol (PG), monoglucosyl diacylglycerol (GlcDG), and sulfoquinovosyl diacylglycerol (SQDG). While these lipid classes have been identified, their precise role in the function of the cytochrome complex are only beginning to be understood. Mechanisms describing the relation between thylakoid lipid content on the stability of the b6 ...


Modulation Of Escherichia Coli Translation By The Specific Inactivation Of TrnaGly Under Oxidative Stress, Lorenzo Eugenio Leiva, Andrea Pincheira, Sara Elgamal, Sandra D. Kienast, Verónica Bravo, Johannes Leufken, Daniela Gutiérrez, Sebastian A. Leidel, Michael Ibba, Assaf Katz Aug 2020

Modulation Of Escherichia Coli Translation By The Specific Inactivation Of TrnaGly Under Oxidative Stress, Lorenzo Eugenio Leiva, Andrea Pincheira, Sara Elgamal, Sandra D. Kienast, Verónica Bravo, Johannes Leufken, Daniela Gutiérrez, Sebastian A. Leidel, Michael Ibba, Assaf Katz

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Bacterial oxidative stress responses are generally controlled by transcription factors that modulate the synthesis of RNAs with the aid of some sRNAs that control the stability, and in some cases the translation, of specific mRNAs. Here, we report that oxidative stress additionally leads to inactivation of tRNAGly in Escherichia coli, inducing a series of physiological changes. The observed inactivation of tRNAGly correlated with altered efficiency of translation of Gly codons, suggesting a possible mechanism of translational control of gene expression under oxidative stress. Changes in translation also depended on the availability of glycine, revealing a mechanism whereby bacteria ...


Structural Analysis Of Protein Therapeutics Using Covalent Labeling – Mass Spectrometry, Patanachai Limpikirati Jul 2020

Structural Analysis Of Protein Therapeutics Using Covalent Labeling – Mass Spectrometry, Patanachai Limpikirati

Doctoral Dissertations

Using mass spectrometry (MS) to obtain information about a higher order structure of protein requires that a protein’s structural properties are encoded into the mass of that protein. Covalent labeling (CL) with reagents that can irreversibly modify solvent accessible amino acid side chains is an effective way to encode structural information into the mass of a protein, as this information can be read-out in a straightforward manner using standard MS-based proteomics techniques. The differential reactivity of proteins under two or more conditions can be used to distinguish protein topologies, conformations, and/or binding sites. CL-MS methods have been effectively ...


Translational Regulation Of Environmental Adaptation In Bacteria, Rodney Tollerson Ii, Michael Ibba Jun 2020

Translational Regulation Of Environmental Adaptation In Bacteria, Rodney Tollerson Ii, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Bacteria must rapidly respond to both intracellular and environmental changes to survive. One critical mechanism to rapidly detect and adapt to changes in environmental conditions is control of gene expression at the level of protein synthesis. At each of the three major steps of translation—initiation, elongation, and termination—cells use stimuli to tune translation rate and cellular protein concentrations. For example, changes in nutrient concentrations in the cell can lead to translational responses involving mechanisms such as dynamic folding of riboswitches during translation initiation or the synthesis of alarmones, which drastically alter cell physiology. Moreover, the cell can fine-tune ...


Role Of The Hyaluronan Receptor, Stabilin-2/Hare, In Health And Disease, Edward N. Harris, Erika Baker Jun 2020

Role Of The Hyaluronan Receptor, Stabilin-2/Hare, In Health And Disease, Edward N. Harris, Erika Baker

Biochemistry -- Faculty Publications

Stabilin-2/HARE is the primary clearance receptor for circulating hyaluronan (HA), a polysaccharide found in the extracellular matrix (ECM) of metazoans. HA has many biological functions including joint lubrication, ocular turgor pressure, skin elasticity and hydration, cell motility, and intercellular signaling, among many others. The regulatory system for HA content in the tissues, lymphatics, and circulatory systems is due, in part, to Stabilin-2/HARE. The activity of this receptor was discovered about 40 years ago (early 1980s), cloned in the mid-1990s, and has been characterized since then. Here, we discuss the overall domain organization of this receptor and how it ...


Biological Physics Student Edition 2020: Chapter 1, Philip C. Nelson May 2020

Biological Physics Student Edition 2020: Chapter 1, Philip C. Nelson

Department of Physics Papers

Chapter 1: What the Ancients Knew


Integrated Unicellular/Filamentous Algal Production, Harvesting And Remediation System, Paul N. Black, James Allen, Timothy J Nicodemus May 2020

Integrated Unicellular/Filamentous Algal Production, Harvesting And Remediation System, Paul N. Black, James Allen, Timothy J Nicodemus

Biochemistry -- Faculty Publications

A method of removing nitrogen-bound nitrate from at least one of groundwater, surface water, or waste water is disclosed. The method includes providing contaminant-containing water from groundwater, surface water, and/or waste water sources. The method further includes adding the contaminant-containing water to an algal photobioreactor system. The method further includes adding an alga culture to the alga photobioreactor system. The method further includes adjusting temperature, CO2 concentration, pH, light wavelength, and/or light intensity in the algal photobioreactor system to optimize the growth of the algea. The method further includes separating the aglae from the water and harvesting algal ...


The Effects Of Largazole, A Histone Deacetylase Inhibitor, On Breast Cancer Cell Viability And Metastasis, Hannah Mccowan May 2020

The Effects Of Largazole, A Histone Deacetylase Inhibitor, On Breast Cancer Cell Viability And Metastasis, Hannah Mccowan

Honors Theses

Histone deacetylase enzymes modify epigenetic characteristics of a genome by removing acetyl groups from histone proteins in chromatin. Histone deacetylase inhibitors work by stopping this activity which can have various results in a cell including apoptosis, cell cycle arrest, differentiation, and migration. The purpose of these experiments was to see how largazole, a histone deacetylase inhibitor, affected cell viability for breast cancer and associated metastatic cell lines in both normoxic and hypoxic conditions. The experiment was completed by setting up two 96-well plates with varying concentrations of largazole and conducting a sulforhodamine viability assay. The specific cell lines used in ...


Alternative Polyadenylation Modulates Expression Of Pro-Fibrotic Proteins And Contributes To Lung Fibrosis, Junsuk Ko May 2020

Alternative Polyadenylation Modulates Expression Of Pro-Fibrotic Proteins And Contributes To Lung Fibrosis, Junsuk Ko

The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access)

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease which affects about 5 to 8 million individuals in the world. Despite the high prevalence, there is currently no cure for IPF, and the cause of this disease is still unclear. Our laboratory and collaborators have shown that nudix hydrolase 21 (NUDT21, which is also known as cleavage factor 25, CFIm25) is a key regulator of alternative polyadenylation (APA). NUDT21 depletion causes 3’UTR shortening via APA leading to enhanced mRNA stability and protein translation. This NUDT21 reduction promotes tumor growth in glioblastoma by enhancing expression of oncogenes. Cancer and IPF ...


A Study Of The Antioxidant Versus Pro-Oxidant Nature Of The Amyloid Beta Peptide And An Analysis Of The Natural Products, Isorhamnetin And Narignenin, As Antioxidants, Kaylee Holmes Apr 2020

A Study Of The Antioxidant Versus Pro-Oxidant Nature Of The Amyloid Beta Peptide And An Analysis Of The Natural Products, Isorhamnetin And Narignenin, As Antioxidants, Kaylee Holmes

Honors Theses

Alzheimer’s disease is a neurodegenerative disorder with no cure. Due to the widespread effects of this disease, abundant research efforts have gone towards finding a cure. The amyloid beta (Ab) peptide has been shown to be a potential cause of the disease due to destructive effects on tissues that it can have both by itself and through reactive oxygen species (ROS) generation. This study was performed in order to assess the structural properties of Ab42monomers, fibrils and oligomers, to assess the antioxidant versus pro-oxidant behavior of the Ab peptide, and to assess the antioxidant nature of the ...


Faculty Spotlight—Dr. Phil Danielson, Hannah Stanley, William Moody Apr 2020

Faculty Spotlight—Dr. Phil Danielson, Hannah Stanley, William Moody

DU Undergraduate Research Journal Archive

Interview with Dr. Phil Danielson


Aminoacyl-Trna Synthetases, Miguel Angel Rubio Gomez, Michael Ibba Apr 2020

Aminoacyl-Trna Synthetases, Miguel Angel Rubio Gomez, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The aminoacyl-tRNA synthetases are an essential and universally distributed family of enzymes that plays a critical role in protein synthesis, pairing tRNAs with their cognate amino acids for decoding mRNAs according to the genetic code. Synthetases help to ensure accurate translation of the genetic code by using both highly accurate cognate substrate recognition and stringent proofreading of noncognate products. While alterations in the quality control mechanisms of synthetases are generally detrimental to cellular viability, recent studies suggest that in some instances such changes facilitate adaption to stress conditions. Beyond their central role in translation, synthetases are also emerging as key ...


Chemoenzymatic Study Of Coa-Linked Rna In Bacteria, Krishna Sapkota Apr 2020

Chemoenzymatic Study Of Coa-Linked Rna In Bacteria, Krishna Sapkota

Dissertations

The ability of RNA to store genetic information and to catalyze biochemical transformations led to the speculation of the existence of RNA world before the evolution of contemporary ribonucleoprotein (RNP) world. Recent discovery of RNA molecules containing metabolic cofactors including coenzyme A and its various thioesters at their 5’ end further supported the RNA world hypothesis as these CoA-linked RNA molecules could be the molecular fossils with very ancient origin. As both RNA and Coenzyme A are believed to have co-existed since last universal common ancestor (LUCA) or even before, the CoA-RNA conjugates in current biology may reveal fundamental molecular ...


Transcriptome Analysis-Identified Long Noncoding Rna Crnde In Maintaining Endothelial Cell Proliferation, Migration, And Tube Formation, Matthew Moran, Xiao Cheng Zeng, Mohamed Sham Shihabudeen Haider Ali, Nishikant Wase, Nghi Nguyen, Weilong Yang, Chi Zhang, Concetta C. Dirusso, Xinghui Sun Mar 2020

Transcriptome Analysis-Identified Long Noncoding Rna Crnde In Maintaining Endothelial Cell Proliferation, Migration, And Tube Formation, Matthew Moran, Xiao Cheng Zeng, Mohamed Sham Shihabudeen Haider Ali, Nishikant Wase, Nghi Nguyen, Weilong Yang, Chi Zhang, Concetta C. Dirusso, Xinghui Sun

Biochemistry -- Faculty Publications

Obesity is a leading risk factor for type-2 diabetes. Diabetes often leads to the dysregulation of angiogenesis, although the mechanism is not fully understood. Previously, long noncoding RNAs (lncRNAs) have been found to modulate angiogenesis. In this study, we asked how the expression levels of lncRNAs change in endothelial cells in response to excessive palmitic acid treatment, an obesitylike condition. Bioinformatics analysis revealed that 305 protein-coding transcripts were upregulated and 70 were downregulated, while 64 lncRNAs were upregulated and 46 were downregulated. Gene ontology and pathway analysis identified endoplasmic reticulum stress, HIF-1 signaling, and Toll-like receptor signaling as enriched after ...


Compounds For Increasing Lipid Synthesis And Storage, Concetta C. Dirusso, Nishikant Wase Mar 2020

Compounds For Increasing Lipid Synthesis And Storage, Concetta C. Dirusso, Nishikant Wase

Biochemistry -- Faculty Publications

This invention relates to methods for increasing lipid production in cells. Methods of producing biofuel from cells and preparing mutraceuticals comprising lipids produced according to a method provided herein are also provided.


Targeting Trna-Synthetase Interactions Towards Novel Therapeutic Discovery Against Eukaryotic Pathogens, Paul Kelly, Fatemeh Hadi-Nezhad, Dennis Y. Liu, Travis J. Lawrence, Roger G. Linington, Michael Ibba, David H. Ardell Feb 2020

Targeting Trna-Synthetase Interactions Towards Novel Therapeutic Discovery Against Eukaryotic Pathogens, Paul Kelly, Fatemeh Hadi-Nezhad, Dennis Y. Liu, Travis J. Lawrence, Roger G. Linington, Michael Ibba, David H. Ardell

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The development of chemotherapies against eukaryotic pathogens is especially challenging because of both the evolutionary conservation of drug targets between host and parasite, and the evolution of strain-dependent drug resistance. There is a strong need for new nontoxic drugs with broad-spectrum activity against trypanosome parasites such as Leishmania and Trypanosoma. A relatively untested approach is to target macromolecular interactions in parasites rather than small molecular interactions, under the hypothesis that the features specifying macromolecular interactions diverge more rapidly through coevolution. We computed tRNA Class-Informative Features in humans and independently in eight distinct clades of trypanosomes, identifying parasite-specific informative features, including ...


Covalent Labeling-Mass Spectrometry For Characterizing Protein-Ligand Complexes, Tianying Liu Feb 2020

Covalent Labeling-Mass Spectrometry For Characterizing Protein-Ligand Complexes, Tianying Liu

Doctoral Dissertations

This dissertation focuses on applying covalent labeling (CL) and mass spectrometry (MS) for characterizing protein-ligand complexes. Understanding protein-ligand interactions has both fundamental and applied significance. Covalent labeling is a protein surface modification technique that selectively modifies solvent-exposed amino acid side chains of proteins. A covalent bond is formed between the functional groups of labeling reagent and protein’s side chain. One of the key factors that affects CL reactivity is a side chain’s solvent accessibility. Ligand binding protects residues on the protein surface from being labeled, and residues involved in ligand binding can be indicated via decreases in labeling ...


Mutational Analysis And Domain Characterization Of The Apolipoprotein L-1 Ion Channel, Charles M. Schaub Feb 2020

Mutational Analysis And Domain Characterization Of The Apolipoprotein L-1 Ion Channel, Charles M. Schaub

Dissertations, Theses, and Capstone Projects

The human innate immunity factor Apolipoprotein L-1 (APOL1) protects against Trypanosoma brucei brucei infection. Recent studies have shown recombinant APOL1 (rAPOL1) inserts into planar lipid bilayers at an acidic pH 5.6 and forms a cation-selective channel, which opens upon subsequent neutralization, pH 7.2. This corresponds with the pH changes APOL1 would encounter during endosome recycling, suggesting that APOL1 forms a pH-gated ion channel in the plasma membrane of the parasite, leading to uncontrolled ion flux and osmotic imbalance. However, structural and domain characteristics of the APOL1 channel are poorly understood, despite potential similarities to diphtheria and colicin toxins ...


Deconstructing Bioluminescence: From Molecular Detail To In Vivo Imaging., Spencer T. Adams Jr. Jan 2020

Deconstructing Bioluminescence: From Molecular Detail To In Vivo Imaging., Spencer T. Adams Jr.

GSBS Dissertations and Theses

Bioluminescence is the chemical production of light that results when a luciferase enzyme catalyzes the luminogenic oxidation of a small-molecule luciferin substrate. The numerous luciferases and luciferins nature has evolved can be used to illuminate biological processes, from in vitro assays to imaging processes in live animals. However, we can improve the utility of bioluminescence through modification of these enzymes and substrates. My thesis work focuses on developing reporters that expand the bioluminescent toolkit and improving our understanding of how bioluminescence works on a molecular level.

The first part of my thesis focuses on characterizing luciferases and luciferins that improve ...