Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

7,115 Full-Text Articles 15,814 Authors 1,374,788 Downloads 230 Institutions

All Articles in Biochemistry

Faceted Search

7,115 full-text articles. Page 4 of 251.

The C. Neoformans Cell Wall: A Scaffold For Virulence, Christine Chrissian 2021 The Graduate Center, City University of New York

The C. Neoformans Cell Wall: A Scaffold For Virulence, Christine Chrissian

Dissertations, Theses, and Capstone Projects

Cryptococcus neoformans is a globally distributed opportunistic fungal pathogen and the causative agent of life threatening cryptococcal meningoencephalitis in immunocompromised individuals, resulting in ~180,000 deaths each year worldwide. A primary virulence-associated trait of this organism is the production of melanin. Melanins are a class of diverse pigments produced via the oxidation and polymerization of aromatic ring compounds that have a characteristically complex, heterogenous, and amorphous structure. They are synthesized by representatives of all biological kingdoms and share a multitude of remarkable properties such as the ability to absorb ultraviolet (UV) light and protect against ionizing radiation. Melanin production in ...


Direct Recruitment Of Eif4gi And/Dap5 To The 5' Utr Of A Subset Of Human Mrna Drives Their Cap-Independent Translation, Solomon A. Haizel 2021 The Graduate Center, City University of New York

Direct Recruitment Of Eif4gi And/Dap5 To The 5' Utr Of A Subset Of Human Mrna Drives Their Cap-Independent Translation, Solomon A. Haizel

Dissertations, Theses, and Capstone Projects

During unfavorable cellular conditions (e.g., tumor hypoxia, viral infection, nutrient deprivation, etc.), the canonical, cap-dependent translation initiation pathway in human cells is suppressed by sequestration of the cap-binding protein, eukaryotic initiation factor(eIF) 4E, by 4E-binding proteins. Circumvention of cap-dependent translation shutdown has been linked to tumor development and cancer progression. The stress-induced repression of cap-dependent translation has also been correlated with increased eIF4GI and its homolog, Death Associated Protein 5 (DAP5) expression levels, suggesting these factors have a role in cap-independent translation. Despite several evidence pointing towards a link upregulation of eIF4GI and /DAP5 levels during stress conditions ...


Effects Of Cocaine And/Or Heroin Use On Resting Cardiovascular Function, Shabber Syed BS, Lina A. Shkokani BS, Leslie H. Lundahl PhD, Renato S. Roxas MD, Philip D. Levy MD, Mark K. Greenwald PhD 2021 Wayne State University

Effects Of Cocaine And/Or Heroin Use On Resting Cardiovascular Function, Shabber Syed Bs, Lina A. Shkokani Bs, Leslie H. Lundahl Phd, Renato S. Roxas Md, Philip D. Levy Md, Mark K. Greenwald Phd

Medical Student Research Symposium

Background: Regular cocaine and/or heroin use is associated with major health risks, especially cardiovascular disease (CVD), but confounded by other factors.

Objectives: We examined effects of chronic (years of regular use) and recent (past-month) use of cocaine and heroin, controlling for other factors, on resting cardiovascular function.

Methods: In a sample of cocaine and/or heroin users (N=292), we obtained data on demographics, body mass index (BMI), history of substance use, and electrocardiogram, heart rate (HR) and blood pressure (BP). Following bivariate correlations, three-block (1: demographics, BMI; 2: tobacco, alcohol, marijuana; 3: cocaine, heroin) regression analyses were conducted ...


Nad(H) Phosphates Mediate Tetramer Assembly Of Human C-Terminal Binding Protein (Ctbp), Jeffry C. Nichols, Celia A. Schiffer, William E. Royer 2021 University of Massachusetts Medical School

Nad(H) Phosphates Mediate Tetramer Assembly Of Human C-Terminal Binding Protein (Ctbp), Jeffry C. Nichols, Celia A. Schiffer, William E. Royer

University of Massachusetts Medical School Faculty Publications

C-terminal binding proteins (CtBPs) are co-transcriptional factors that play key roles in cell fate. We have previously shown that NAD(H) promotes the assembly of similar tetramers from either human CtBP1 and CtBP2 and that CtBP2 tetramer destabilizing mutants are defective for oncogenic activity. To assist structure-based design efforts for compounds that disrupt CtBP tetramerization, it is essential to understand how NAD(H) triggers tetramer assembly. Here, we investigate the moieties within NAD(H) that are responsible for triggering tetramer formation. Using multi-angle light scattering (MALS) we show that ADP is able to promote tetramer formation of both CtBP1 and ...


Separation And Identification Of Permethylated Glycan Isomers By Reversed Phase Nanolc-Nsi-Ms(N), Simone Kurz, M. Osman Sheikh, Shan Lu, Lance Wells, Michael Tiemeyer 2021 University of Georgia

Separation And Identification Of Permethylated Glycan Isomers By Reversed Phase Nanolc-Nsi-Ms(N), Simone Kurz, M. Osman Sheikh, Shan Lu, Lance Wells, Michael Tiemeyer

Open Access Publications by UMMS Authors

High performance liquid chromatography has been employed for decades to enhance detection sensitivity and quantification of complex analytes within biological mixtures. Among these analytes, glycans released from glycoproteins and glycolipids have been characterized as underivatized or fluorescently tagged derivatives by HPLC coupled to various detection methods. These approaches have proven extremely useful for profiling the structural diversity of glycoprotein and glycolipid glycosylation but require the availability of glycan standards and secondary orthogonal degradation strategies to validate structural assignments. A robust method for HPLC separation of glycans as their permethylated derivatives, coupled with in-line MSn fragmentation to assign structural features independent ...


Science, Physiology, And Nutrition For The Nonscientist, Judi S. Morrill 2021 San Jose State University

Science, Physiology, And Nutrition For The Nonscientist, Judi S. Morrill

Open Educational Resources

A wonderful blend of physiology, nutrition, biochemistry, genetics, biology, evolution, chemistry--what we all need to know as informed citizens. A basic knowledge of the life sciences and how our bodies work--to promote our own good health, especially as we're bombarded with misleading advertisements, soundbites, and the like. DNA fingerprinting, calorie requirements, dietary advice, genetic engineering (including gene editing with CRISPR cas9)--all in an easy-to understand book.


The Effect Of Alcalase Concentration On The Proteins From The Shells Of Litopenaeus Setiferus (White Shrimp), Liam T. Quan 2021 Heathwood Hall

The Effect Of Alcalase Concentration On The Proteins From The Shells Of Litopenaeus Setiferus (White Shrimp), Liam T. Quan

Journal of the South Carolina Academy of Science

Chitin is a naturally abundant polymer that also happens to be biodegradable. Chitin can be used in a variety of different products such as biodegradable plastics, papers, medical products, foods, and medical treatments. To extract chitin, shells must be demineralized and deproteinized. The goal of this experiment was to examine the effect of the protease Alcalase in the deproteinization of litopenaeus setiferus shells. The hypothesis was that if the concentration of Alcalase increased, then the absorbance of proteins in the spectrophotometer reading would increase. The null hypothesis was that if the concentration increased there would be no change in absorption ...


Arginase 1 Insufficiency Precipitates Amyloid-Β Deposition And Hastens Behavioral Impairment In A Mouse Model Of Amyloidosis, Chao Ma, Jerry B. Hunt, Maj-Linda B. Selenica, Awa Sanneh, Leslie A. Sandusky-Beltran, Mallory Watler, Rana Daas, Andrii Kovalenko, Huimin Liang, Devon Placides, Chuanhai Cao, Xiaoyang Lin, Michael B. Orr, Bei Zhang, John C. Gensel, David J. Feola, Marcia N. Gordon, Dave Morgan, Paula C. Bickford, Daniel C. Lee 2021 University of Kentucky

Arginase 1 Insufficiency Precipitates Amyloid-Β Deposition And Hastens Behavioral Impairment In A Mouse Model Of Amyloidosis, Chao Ma, Jerry B. Hunt, Maj-Linda B. Selenica, Awa Sanneh, Leslie A. Sandusky-Beltran, Mallory Watler, Rana Daas, Andrii Kovalenko, Huimin Liang, Devon Placides, Chuanhai Cao, Xiaoyang Lin, Michael B. Orr, Bei Zhang, John C. Gensel, David J. Feola, Marcia N. Gordon, Dave Morgan, Paula C. Bickford, Daniel C. Lee

Sanders-Brown Center on Aging Faculty Publications

Alzheimer’s disease (AD) includes several hallmarks comprised of amyloid-β (Aβ) deposition, tau neuropathology, inflammation, and memory impairment. Brain metabolism becomes uncoupled due to aging and other AD risk factors, which ultimately lead to impaired protein clearance and aggregation. Increasing evidence indicates a role of arginine metabolism in AD, where arginases are key enzymes in neurons and glia capable of depleting arginine and producing ornithine and polyamines. However, currently, it remains unknown if the reduction of arginase 1 (Arg1) in myeloid cell impacts amyloidosis. Herein, we produced haploinsufficiency of Arg1 by the hemizygous deletion in myeloid cells using Arg1 ...


Modeling The Bidirectional Glutamine/ Ammonium Conversion Between Cancer Cells And Cancer-Associated Fibroblasts, Peter Hinow, Gabriella Pinter, Wei Yan, Shizhen Emily Wang 2021 University of Wisconsin - Milwaukee

Modeling The Bidirectional Glutamine/ Ammonium Conversion Between Cancer Cells And Cancer-Associated Fibroblasts, Peter Hinow, Gabriella Pinter, Wei Yan, Shizhen Emily Wang

Mathematical Sciences Faculty Articles

Like in an ecosystem, cancer and other cells residing in the tumor microenvironment engage in various modes of interactions to buffer the negative effects of environmental changes. One such change is the consumption of common nutrients (such as glutamine/Gln) and the consequent accumulation of toxic metabolic byproducts (such as ammonium/NH4). Ammonium is a waste product of cellular metabolism whose accumulation causes cell stress. In tumors, it is known that it can be recycled into nutrients by cancer associated fibroblasts (CAFs). Here we present monoculture and coculture growth of cancer cells and CAFs on different substrates: glutamine and ...


Site-Specific Incorporation Of Citrulline Into Proteins In Mammalian Cells, Santanu Mondal, Shu Wang, Yunan Zheng, Sudeshna Sen, Abhishek Chatterjee, Paul R. Thompson 2021 University of Massachusetts Medical School

Site-Specific Incorporation Of Citrulline Into Proteins In Mammalian Cells, Santanu Mondal, Shu Wang, Yunan Zheng, Sudeshna Sen, Abhishek Chatterjee, Paul R. Thompson

University of Massachusetts Medical School Faculty Publications

Citrullination is a post-translational modification (PTM) of arginine that is crucial for several physiological processes, including gene regulation and neutrophil extracellular trap formation. Despite recent advances, studies of protein citrullination remain challenging due to the difficulty of accessing proteins homogeneously citrullinated at a specific site. Herein, we report a technology that enables the site-specific incorporation of citrulline (Cit) into proteins in mammalian cells. This approach exploits an engineered E. coli-derived leucyl tRNA synthetase-tRNA pair that incorporates a photocaged-citrulline (SM60) into proteins in response to a nonsense codon. Subsequently, SM60 is readily converted to Cit with light in vitro and in ...


Using Nmr Spectroscopy And Computational Chemistry To Confirm The Structure Of Novel Antibiotic Nocamycin O, Stephanie Lewis 2021 Claremont Colleges

Using Nmr Spectroscopy And Computational Chemistry To Confirm The Structure Of Novel Antibiotic Nocamycin O, Stephanie Lewis

CMC Senior Theses

In recent years, many medically promising antibiotics have been discovered in nature, especially in insect-microbe symbioses. One of the better-studied examples of this kind of defensive relationship is that of fungus-growing ants and the antibiotic-producing Actinobacteria. These bacteria produce several defensive chemicals with myriad uses, including one antibiotic that inhibits the growth of several bacterial strains, including other Actinobacteria. This antibiotic (known as nocamycin O) is a promising candidate for medicinal use due to its similarities to bacterial RNA polymerase inhibitors tirandamycin and streptolydigin, which inhibit several human pathogens. The determination of the structure of nocamycin O will be an ...


Transcriptional Repressor Protein Based Macrolide Biosensor Development With Improved Sensitivity, Jayani A. Christopher 2021 Virginia Commonwealth University

Transcriptional Repressor Protein Based Macrolide Biosensor Development With Improved Sensitivity, Jayani A. Christopher

Graduate Research Posters

Macrolide antibiotics are in high demand for clinical applications. Macrolides are biosynthesized via giant assembly line polyketide synthases (PKS) which are arranged in a modular fashion. Combinatorial biosynthetic methods have been used to produce diversified macrolides by reprograming these modules and modifying tailoring enzymes required for post synthetic modifications. However it is challenging due to the size and complexity of PKSs. To overcome this challenge, new enzymes for macrolide diversification could be obtained by directed evolution where a large number of enzyme variants need to be screened. Therefore it is important to develop high throughput screening methods to identify the ...


The Effects Of Rolipram, A Selective Phosphodiesterase Inhibitor, On Immortalized Schwann Cell Proliferation, Akap95 And Cyclin D3 Expression, Kyle P. Kenney, Mary Pistack, Angela Asirvatham 2021 Misericordia University

The Effects Of Rolipram, A Selective Phosphodiesterase Inhibitor, On Immortalized Schwann Cell Proliferation, Akap95 And Cyclin D3 Expression, Kyle P. Kenney, Mary Pistack, Angela Asirvatham

Student Research Poster Presentations 2021

Schwann cells are a vital component of the Peripheral Nervous System and aid in the repair of axons following injury. The regulation of Schwann cell growth in vitro is facilitated by heregulin, a neuron-secreted growth factor, and an unknown mitogen that activates the cyclic adenosine monophosphate (cAMP) pathway. The abundance of intracellular cAMP is regulated by a family of enzymes called phosphodiesterases (PDEs). PDE inhibitors such as rolipram have therapeutic potential in various disorders and function by increasing the levels of intracellular cAMP. A-Kinase anchoring proteins (AKAPs), a family of scaffolding proteins that belong to the cAMP/Protein Kinase A ...


Single Molecule Investigations Of Holliday Junction Binding Protein Ruva, Dalton Reed Gibbs 2021 Virginia Commonwealth University

Single Molecule Investigations Of Holliday Junction Binding Protein Ruva, Dalton Reed Gibbs

Theses and Dissertations

DNA breaks are inevitable as they mainly occur due to cells’ own reactive oxygen species (ROS). While DNA breaks can be single-stranded or double-stranded, the double-stranded DNA (dsDNA) breaks are more dangerous. If such damage is not repaired, it can lead to genetic instability and serious health issues including cancers. One way dsDNA breaks can be repaired is via a process called homologous recombination (HR), which involves several DNA-binding proteins. Therefore, to have a better insight into the repair mechanism and origin of repair defects, we need a better understanding of how these proteins interact with DNA itself and DNA ...


The Inhibition Of Growth Of S. Cerevisiae, U. Maydis, And M. Lychinidis-Dioicae By Apiaecea Plant Extracts, Jackson M Hoffman, Jared Scott, David Schultz PhD 2021 University of Louisville

The Inhibition Of Growth Of S. Cerevisiae, U. Maydis, And M. Lychinidis-Dioicae By Apiaecea Plant Extracts, Jackson M Hoffman, Jared Scott, David Schultz Phd

Undergraduate Arts and Research Showcase

The Apiaceae family of plants contains over 3,500 species, many of which are used as food crops: vegetables (carrot, parsnip, celery, etc.), herbs (cilantro, fennel, dill, etc.), and spices (cumin, anise, caraway, etc.). Many spices have been shown to exhibit antimicrobial properties against both bacteria and fungi. We set out to determine if the Apiaceae spice extracts currently used in our lab for anticancer studies exhibit any antimicrobial properties. Ethanolic extracts were made from several Apiaceae seeds: Apium graveolens (celery), Cuminum cyminum (cumin), Anethum graveolens(dill), Foeniculum vulgare (fennel), Coriandrum satvium (coriander), Pimpinella ansium (anise), Trachyspermum ammi (ajwain), Carum ...


Entry And Replication Of Negative-Strand Rna Viruses, Kerri Boggs 2021 University of Kentucky

Entry And Replication Of Negative-Strand Rna Viruses, Kerri Boggs

Theses and Dissertations--Molecular and Cellular Biochemistry

Hendra virus (HeV) and human metapneumovirus (HMPV) are negative-sense, singled-stranded RNA viruses. The paramyxovirus HeV is classified as a biosafety level 4 pathogen due to its high fatality rate and the lack of a human vaccine or antiviral treatment. HMPV is a widespread pneumovirus that causes respiratory tract infections which are particularly dangerous for young children, immunocompromised individuals, and the elderly. Like HeV, no vaccines or therapies are available to combat HMPV infections. These viruses fuse their lipid envelopes with a cell to initiate infection. Blocking cell entry is a promising approach for antiviral development, and many vaccines are designed ...


Interactions Of Post-Pks Enzymes Of The Mithramycin Biosynthetic Pathway, Ryan Wheeler 2021 University of Kentucky

Interactions Of Post-Pks Enzymes Of The Mithramycin Biosynthetic Pathway, Ryan Wheeler

Theses and Dissertations--Pharmacy

Combinatorial biosynthesis is a powerful tool for generating new, more active drug analogues to combat disease. But in order for combinatorial biosynthesis to be employed to its full potential, a deep understanding of the enzymes that produce the parent molecule must be had. The goals of the work presented in this thesis are to characterize the reaction catalyzed by MtmW, the final enzyme in the mithramycin (MTM) biosynthetic pathway, and to discover the interaction between MtmW and MtmOIV.

MtmW is an aldol-ketoreductase responsible for reducing the most distal carbonyl on the MTM pentyl side chain. It forms an octamer that ...


Clpxp Degradation System In Escherichia Coli, A Study Of Its Energy Sources And Its Applications In Managing The Expression Levels Of Targeted Membrane And Soluble Proteins, Thilini Abeywansha 2021 University of Kentucky

Clpxp Degradation System In Escherichia Coli, A Study Of Its Energy Sources And Its Applications In Managing The Expression Levels Of Targeted Membrane And Soluble Proteins, Thilini Abeywansha

Theses and Dissertations--Chemistry

ClpXP is an Escherichia coli protease that carries out energy-dependent intracellular proteolysis. In recent years, this system has been widely studied due to its importance as protein regulatory machinery and a virulence factor. Protein substrates of ClpXP contain degrons with a specific protein sequence. SsrA tag is one of the five degrons known to designate proteins for ClpXP degradation. SsrA is an 11 amino acid peptide added to the C-terminus of nascent polypeptide chains translated from aberrant messenger RNAs lacking stop codons via a process called trans-translation.

ClpXP was known to targets only cytosolic proteins with degrons until recently, AcrB ...


Genetic Analysis Of Cellular Adhesion In Arabidopsis Thaliana, Andrew Close Bolender 2021 Bowdoin College

Genetic Analysis Of Cellular Adhesion In Arabidopsis Thaliana, Andrew Close Bolender

Honors Projects

Plant cell adhesion is mediated by the extracellular matrix (ECM) or cell wall and plays an important role in plant morphogenesis and development. The amount, modification, and cleavage of pectin in the cell wall are major contributors to the adhesive properties of the ECM. To gain a more complete picture of plant cell adhesion processes, Arabidopsis thaliana seedlings were previously mutagenized and screened for hypocotyl adhesion defects. Genomic sequencing of one plant exhibiting an adhesion defect, isolate 242, showed that two mutations, one in cellulose synthase (CesA1) and another in a sugar transporter, are candidates for the causative mutation. This ...


Structual Analysis Of The Cl-Par-4 Tumor Suppressor As A Function Of Ionic Environment, Krishna K. Raut, Komala Ponniah, Steven M. Pascal 2021 Old Dominion University

Structual Analysis Of The Cl-Par-4 Tumor Suppressor As A Function Of Ionic Environment, Krishna K. Raut, Komala Ponniah, Steven M. Pascal

Chemistry & Biochemistry Faculty Publications

Prostate apoptosis response-4 (Par-4) is a proapoptotic tumor suppressor protein that has been linked to a large number of cancers. This 38 kilodalton (kDa) protein has been shown to be predominantly intrinsically disordered in vitro. In vivo, Par-4 is cleaved by caspase-3 at Asp-131 to generate the 25 kDa functionally active cleaved Par-4 protein (cl-Par-4) that inhibits NF-κB-mediated cell survival pathways and causes selective apoptosis in tumor cells. Here, we have employed circular dichroism (CD) spectroscopy and dynamic light scattering (DLS) to assess the effects of various monovalent and divalent salts upon the conformation of cl-Par-4 in vitro. We have ...


Digital Commons powered by bepress