Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Physics

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 91 - 120 of 199

Full-Text Articles in Condensed Matter Physics

Emergent Phenomena In Quantum Critical Systems, Kun Chen Jul 2018

Emergent Phenomena In Quantum Critical Systems, Kun Chen

Doctoral Dissertations

A quantum critical point (QCP) is a point in the phase diagram of quantum matter where a continuous phase transition takes place at zero temperature. Low-dimensional quantum critical systems are strongly correlated, therefore hosting nontrivial emergent phenomena. In this thesis, we first address two decades-old problems on quantum critical dynamics. We then reveal two novel emergent phenomena of quantum critical impurity problems. In the first part of the thesis, we address the linear response dynamics of the $(2+1)$-dimensional $O(2)$ quantum critical universality class, which can be realized in the ultracold bosonic system near the superfluid (SF) to Mott insulator (MI) …


Simulating The Electrical Properties Of Random Carbon Nanotube Networks Using A Simple Model Based On Percolation Theory, Roberto Abril Valenzuela Jun 2018

Simulating The Electrical Properties Of Random Carbon Nanotube Networks Using A Simple Model Based On Percolation Theory, Roberto Abril Valenzuela

Physics

Carbon nanotubes (CNTs) have been subject to extensive research towards their possible applications in the world of nanoelectronics. The interest in carbon nanotubes originates from their unique variety of properties useful in nanoelectronic devices. One key feature of carbon nanotubes is that the chiral angle at which they are rolled determines whether the tube is metallic or semiconducting. Of main interest to this project are devices containing a thin film of randomly arranged carbon nanotubes, known as carbon nanotube networks. The presence of semiconducting tubes in a CNT network can lead to a switching effect when the film is electro-statically …


An Analysis Of Frenkel Defects And Backgrounds Modeling For Supercdms Dark Matter Searches, Matthew Stein May 2018

An Analysis Of Frenkel Defects And Backgrounds Modeling For Supercdms Dark Matter Searches, Matthew Stein

Physics Theses and Dissertations

Years of astrophysical observations suggest that dark matter comprises more than ~80 % of all matter in the universe. Particle physics theories favor a weakly-interacting particle that could be directly detected in terrestrial experiments. The Super Cryogenic Dark Matter Search (SuperCDMS) Collaboration operates world-leading experiments to directly detect dark matter interacting with ordinary matter. The SuperCDMS Soudan experiment searched for weakly interacting massive particles (WIMPs) via their elastic-scattering interactions with nuclei in low-temperature germanium detectors.

During the operation of the SuperCDMS Soudan experiment, 210Pb sources were installed to study background rejection of the Ge detectors. Data from these sources …


Vibrational Relaxation Theory For Systems Embedded In Microscopically Specified Reservoirs, Anastasia Aemilia Ierides May 2018

Vibrational Relaxation Theory For Systems Embedded In Microscopically Specified Reservoirs, Anastasia Aemilia Ierides

Physics & Astronomy ETDs

This dissertation is a study of the theoretical framework of the practical as well as fundamental problem of the process of relaxation to equilibrium of quantum mechanical systems. The fundamental aspect is concerned with the simultaneous occurrence of decoherence and population equilibration. The practical aspect deals with experimental observations of vibrational relaxation of molecules embedded in liquids or solids. The systems include, but are not limited to, the nondegenerate dimer and harmonic oscillator, in one case weak and in the other strong, interaction with a thermal bath. The time dependence of the energy and the temperature dependence of the relaxation …


Hartmann Characterization Of The Peem-3 Aberration-Corrected X-Ray Photoemission Electron Microscope, A. Scholl, M. A. Marcus, A. Doran, J. R. Nasiatka, A. T. Young, A. A. Macdowell, R. Streubel, N. Kent, J. Feng, W. Wan, H. A. Padmore May 2018

Hartmann Characterization Of The Peem-3 Aberration-Corrected X-Ray Photoemission Electron Microscope, A. Scholl, M. A. Marcus, A. Doran, J. R. Nasiatka, A. T. Young, A. A. Macdowell, R. Streubel, N. Kent, J. Feng, W. Wan, H. A. Padmore

Robert Streubel Papers

Aberration correction by an electron mirror dramatically improves the spatial resolution and transmission of photoemission electron microscopes. We will review the performance of the recently installed aberration corrector of the X-ray Photoemission Electron Microscope PEEM-3 and show a large improvement in the efficiency of the electron optics. Hartmann testing is introduced as a quantitative method to measure the geometrical aberrations of a cathode lens electron microscope. We find that aberration correction leads to an order of magnitude reduction of the spherical aberrations, suggesting that a spatial resolution of below 100 nm is possible at 100% transmission of the optics when …


Quasiprobability Behind The Out-Of-Time-Ordered Correlator, Nicole Yunger Halpern, Brian Swingle, Justin Dressel Apr 2018

Quasiprobability Behind The Out-Of-Time-Ordered Correlator, Nicole Yunger Halpern, Brian Swingle, Justin Dressel

Mathematics, Physics, and Computer Science Faculty Articles and Research

Two topics, evolving rapidly in separate fields, were combined recently: the out-of-time-ordered correlator (OTOC) signals quantum-information scrambling in many-body systems. The Kirkwood-Dirac (KD) quasiprobability represents operators in quantum optics. The OTOC was shown to equal a moment of a summed quasiprobability [Yunger Halpern, Phys. Rev. A 95, 012120 (2017)]. That quasiprobability, we argue, is an extension of the KD distribution. We explore the quasiprobability's structure from experimental, numerical, and theoretical perspectives. First, we simplify and analyze Yunger Halpern's weak-measurement and interference protocols for measuring the OTOC and its quasiprobability. We decrease, exponentially in system size, the number of trials …


Hyperpolarization Of Silicon Nanoparticles With Tempo Radicals, Jingzhe Hu, Nicholas Whiting, Pratip Bhattacharya Mar 2018

Hyperpolarization Of Silicon Nanoparticles With Tempo Radicals, Jingzhe Hu, Nicholas Whiting, Pratip Bhattacharya

Nicholas Whiting

Silicon-based particles can be hyperpolarized via dynamic nuclear polarization to enhance 29Si magnetic resonance signals. Application of this technique to nanoscale silicon particles has been limited because of the low signal enhancements achieved; it is hypothesized that this is due to the low number of endogenous electronic defects inherent to the particles. We introduce a method of incorporating exogenous radicals into silicon nanoparticle suspensions in order to improve the hyperpolarization of 29Si nuclear spins to levels sufficient for in vivo MR imaging. Calibration of radical concentrations and polarization times are reported for a variety of silicon particle sizes (30−200 nm …


Structure And Magnetism Of Mn5ge3 Nanoparticles, Onur Tosun, Mohammed Salehi-Fashami, Balamurugan Balasubramanian, Ralph Skomski, David J. Sellmyer, George C. Hadjipanayis Jan 2018

Structure And Magnetism Of Mn5ge3 Nanoparticles, Onur Tosun, Mohammed Salehi-Fashami, Balamurugan Balasubramanian, Ralph Skomski, David J. Sellmyer, George C. Hadjipanayis

Nebraska Center for Materials and Nanoscience: Faculty Publications

In this work, we investigated the magnetic and structural properties of isolated Mn5Ge3 nanoparticles prepared by the cluster-beam deposition technique. Particles with sizes between 7.2 and 12.6 nm were produced by varying the argon pressure and power in the cluster gun. X-ray diffraction (XRD)and selected area diffraction (SAD) measurements show that the nanoparticles crystallize in the hexagonal Mn5Si3-type crystal structure, which is also the structure of bulk Mn5Ge3. The temperature dependence of the magnetization shows that the as-made particles are ferromagnetic at room temperature and have slightly different Curie …


Magnetism Of New Metastable Cobalt-Nitride Compounds, Balamuruga Balamurugan, Xin Zhao, Shah R. Valloppilly, Sumit Beniwal, Ralph Skomski, Anandakumar Sarella, Yunlong Jin, Xingzhong Li, Xiaoshan Xu, Huibo Cao, Haohan Wang, Axel Enders, Cai-Zhuang Wang, Kai-Ming Ho, David J. Sellmyer Jan 2018

Magnetism Of New Metastable Cobalt-Nitride Compounds, Balamuruga Balamurugan, Xin Zhao, Shah R. Valloppilly, Sumit Beniwal, Ralph Skomski, Anandakumar Sarella, Yunlong Jin, Xingzhong Li, Xiaoshan Xu, Huibo Cao, Haohan Wang, Axel Enders, Cai-Zhuang Wang, Kai-Ming Ho, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

The search for new magnetic materials with high magnetization and magnetocrystalline anisotropy is important for a wide range of applications including information and energy processing. There is only a limited number of naturally occurring magnetic compounds that are suitable. This situation stimulates an exploration of new phases that occur far from thermal-equilibrium conditions, but their stabilization is generally inhibited due to high positive formation energies. Here a nanocluster-deposition method has enabled the discovery of a set of new non-equilibrium Co-N intermetallic compounds. The experimental search was assisted by computational methods including adaptive-genetic-algorithm and electronic- structure calculations. Conventional wisdom is that …


Structural, Magnetic, And Electron-Transport Properties Of Epitaxial Mn2Ptsn Films, Y. Jin, Shah R. Valloppilly, Parashu Kharel, Jace Waybright, Pavel V. Lukashev, Xingzhong Li, David J. Sellmyer Jan 2018

Structural, Magnetic, And Electron-Transport Properties Of Epitaxial Mn2Ptsn Films, Y. Jin, Shah R. Valloppilly, Parashu Kharel, Jace Waybright, Pavel V. Lukashev, Xingzhong Li, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

The growth of new magnetic materials on suitable insulating substrates is an important part of the development of spin-electronics devices for memory or information processing. Epitaxial thin films of Mn2PtSn were grown on a MgO [001] substrate by magnetron co-sputtering of the constituents. Structural, magnetic, and electron-transport properties were investigated. The epitaxial Mn2PtSn film has an inverse tetragonal structure with the c-axis aligned in the plane of the MgO substrate. The lattice constants determined using XRD and TEM analysis are c=6.124Å and a=b=4.505Å. The orientation of Mn2PtSn c-axis which …


Towards A Strong Spin–Orbit Coupling Magnetoelectric Transistor, Peter Dowben, Christian Binek, Kai Zhang, Lu Wang, Wai-Ning Mei, Jonathan P. Bird, Uttam Singisetti, Xia Hong, Kang L. Wang, Dmitri Nikonov Jan 2018

Towards A Strong Spin–Orbit Coupling Magnetoelectric Transistor, Peter Dowben, Christian Binek, Kai Zhang, Lu Wang, Wai-Ning Mei, Jonathan P. Bird, Uttam Singisetti, Xia Hong, Kang L. Wang, Dmitri Nikonov

Peter Dowben Publications

Here, we outline magnetoelectric (ME) device concepts based on the voltage control of the interface magnetism of an ME antiferromagnet gate dielectric formed on a very thin semiconductor channel with large spin–orbit coupling (SOC). The emphasis of the ME spin field-effect transistors (ME spin FET) is on an antiferromagnet spin–orbit read logic device and a ME spin-FET multiplexer. Both spin-FET schemes exploit the strong SOC in the semiconducting channel materials but remain dependent on the voltage-induced switching of an ME, so that the switching time is limited only by the switching dynamics of the ME. The induced exchange field spin …


Magnetocrystalline Anisotropy Of "-Fe2o3, Imran Ahamed, Rohilt Pathak, Arti Kashyap Dec 2017

Magnetocrystalline Anisotropy Of "-Fe2o3, Imran Ahamed, Rohilt Pathak, Arti Kashyap

Nebraska Center for Materials and Nanoscience: Faculty Publications

The epsilon Fe2O3 phase of iron oxide has been studied to understand the spin structure and the magnetocrystalline anisotropy in the bulk and in thin films of "-Fe2O3 and Co-doped "-Fe2O3. The preferential magnetization direction in the nanoparticles of "-Fe2O3 is along the a-axis [M. Gich et al., Chem. Mater. 18, 3889 (2006)]. Compared to the bulk band gap of 1.9 eV, the thin-film band gap is reduced to 1.3 eV in the Co-free films and to 0.7 eV in the film with partial …


Texture Development And Coercivity Enhancement In Cast Alnico 9 Magnets, Wenyong Zhang, Shah Valloppilly, Xingzhong Li, Lanping Yue, Ralph Skomski, Iver Anderson, Matthew Kramer, Wei Tang, Jeff Shield, David J. Sellmyer Dec 2017

Texture Development And Coercivity Enhancement In Cast Alnico 9 Magnets, Wenyong Zhang, Shah Valloppilly, Xingzhong Li, Lanping Yue, Ralph Skomski, Iver Anderson, Matthew Kramer, Wei Tang, Jeff Shield, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

The effect of Y addition and magnetic field on texture and magnetic properties of arc-melted alnico 9 magnets has been investigated. Small additions of Y (1.5 wt.%) develop a (200) texture for the arc-melted alnico 9 magnet. Such a texture is hard to form in cast samples. To achieve this goal, we set up a high-field annealing system with a maximum operation temperature of 12500 C. This system enabled annealing in a field of 45 kOe with subsequent draw annealing for the solutionized buttons; we have been able to substantially increase remanence ratio and coercivity, from 0.70 and 1200 …


Superconductivity At Т≈200 K In Bismuth Cuprates Synthesized Using Solar Energy, J. Chigvinadze, Juana Acrivos, S. Ashimov, D. Gulamova, G. Donadze Oct 2017

Superconductivity At Т≈200 K In Bismuth Cuprates Synthesized Using Solar Energy, J. Chigvinadze, Juana Acrivos, S. Ashimov, D. Gulamova, G. Donadze

Faculty Publications, Chemistry

When investigating low-frequency (0.1 Hz) oscillations of multiphase high-temperature cuprate superconductors (HTCS) Bi1,7Pb0,3Sr2Ca(n-1)CunOy (n=2-30), a wide attenuation peak (ΔT~100 К) with a maximum at Т≈200 К was detected. This peak was particularly pronounced in field cooling (FC) experiments, i.e. after abrupt cooling of the sample in the external magnetic field at the temperature Т<Тс with subsequent slow warming up to room temperature with invariance of the applied field. The attenuation peak height depended on the preliminaryorientation (before cooling) of the samples θ in the measured permanent magnetic field Н. On the one hand, it is well known that, after the FC procedure and subsequent slow warming up, at the temperatures close to the critical temperature Тс, the attenuation peak associated with “melting” of the Abrikosov frozen vortex structure and its disappearance at Т >Тс is detected in monophase samples. At the same time, in most multiphase bismuth HTCS samples, synthesized using solar energy and superfast quenching of the melt, the attenuation peak with the maximum at Т≈200 К was observed.Depending on the conditions of synthesis, the attenuation peak could …


Three-Dimensional Nanomagnetism, Amalio Fernández-Pacheco, Robert Streubel, Olivier Fruchart, Riccardo Hertel, Peter Fischer, Russell P. Cowburn Aug 2017

Three-Dimensional Nanomagnetism, Amalio Fernández-Pacheco, Robert Streubel, Olivier Fruchart, Riccardo Hertel, Peter Fischer, Russell P. Cowburn

Robert Streubel Papers

Magnetic nanostructures are being developed for use in many aspects of our daily life, spanning areas such as data storage, sensing and biomedicine. Whereas patterned nanomagnets are traditionally two-dimensional planar structures, recent work is expanding nanomagnetism into three dimensions; a move triggered by the advance of unconventional synthesis methods and the discovery of new magnetic effects. In three-dimensional nanomagnets more complex magnetic configurations become possible, many with unprecedented properties. Here we review the creation of these structures and their implications for the emergence of new physics, the development of instrumentation and computational methods, and exploitation in numerous applications.


Nanosecond X-Ray Photon Correlation Spectroscopy On Magnetic Skyrmions, M. H. Seaberg, B. Holladay, J. C.T. Lee, M. Sikorski, A. H. Reid, S. A. Montoya, G. L. Dakovski, J. D. Koralek, G. Coslovich, S. Moeller, W. F. Schlotter, R. Streubel, S. D. Kevan, P. Fischer, E. E. Fullerton, J. L. Turner, F. J. Decker, S. K. Sinha, S. Roy, J. J. Turner Aug 2017

Nanosecond X-Ray Photon Correlation Spectroscopy On Magnetic Skyrmions, M. H. Seaberg, B. Holladay, J. C.T. Lee, M. Sikorski, A. H. Reid, S. A. Montoya, G. L. Dakovski, J. D. Koralek, G. Coslovich, S. Moeller, W. F. Schlotter, R. Streubel, S. D. Kevan, P. Fischer, E. E. Fullerton, J. L. Turner, F. J. Decker, S. K. Sinha, S. Roy, J. J. Turner

Robert Streubel Papers

We report an x-ray photon correlation spectroscopy method that exploits the recent development of the two-pulse mode at the Linac Coherent Light Source. By using coherent resonant x-ray magnetic scattering, we studied spontaneous fluctuations on nanosecond time scales in thin films of multilayered Fe/Gd that exhibit ordered stripe and Skyrmion lattice phases. The correlation time of the fluctuations was found to differ between the Skyrmion phase and near the stripe-Skyrmion boundary. This technique will enable a significant new area of research on the study of equilibrium fluctuations in condensed matter.


Simulation Of Alnico Coercivity, Liqin Ke, Ralph Skomski, Todd D. Hoffman, Lin Zhoue, Wei Tang, Duane D. Johnson, Matthew J. Kramer, Iver E. Anderson, C.Z. Wang Jul 2017

Simulation Of Alnico Coercivity, Liqin Ke, Ralph Skomski, Todd D. Hoffman, Lin Zhoue, Wei Tang, Duane D. Johnson, Matthew J. Kramer, Iver E. Anderson, C.Z. Wang

Nebraska Center for Materials and Nanoscience: Faculty Publications

Micromagnetic simulations of alnico show substantial deviations from Stoner-Wohlfarth behavior due to the unique size and spatial distribution of the rod-like Fe-Co phase formed during spinodal decomposition in an external magnetic field. The maximum coercivity is limited by single-rod effects, especially deviations from ellipsoidal shape, and by interactions between the rods. Both the exchange interaction between connected rods and magnetostatic interaction between rods are considered, and the results of our calculations show good agreement with recent experiments. Unlike systems dominated by magnetocrystalline anisotropy, coercivity in alnico is highly dependent on size, shape, and geometric distribution of the Fe-Co phase, all …


Vortex Circulation Patterns In Planar Microdisk Arrays, Sven Velten, Robert Streubel, Alan Farhan, Noah Kent, Mi Young Im, Andreas Scholl, Scott Dhuey, Carolin Behncke, Guido Meier, Peter Fischer Jun 2017

Vortex Circulation Patterns In Planar Microdisk Arrays, Sven Velten, Robert Streubel, Alan Farhan, Noah Kent, Mi Young Im, Andreas Scholl, Scott Dhuey, Carolin Behncke, Guido Meier, Peter Fischer

Robert Streubel Papers

We report a magnetic X-ray microscopy study of the pattern formation of circulation in arrays of magnetic vortices ordered in a hexagonal and a honeycomb lattice. In the honeycomb lattice, we observe at remanence an ordered phase of alternating circulations, whereas in the hexagonal lattice, small regions of alternating lines form. A variation in the edge-to-edge distance shows that the size of those regions scales with the magnetostatic interaction. Micromagnetic simulations reveal that the patterns result from the formation of flux closure states during the nucleation process.


Effect Of Disorder On The Resistivity Of Cofecral Films, Y. Jin, R. Skomski, P. Kharel, S.R. Valloppilly, D. J. Sellmyer Mar 2017

Effect Of Disorder On The Resistivity Of Cofecral Films, Y. Jin, R. Skomski, P. Kharel, S.R. Valloppilly, D. J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Structural and electron-transport properties of thin films of the ferrimagnetic Heusler compound CoFeCrAl have been investigated to elucidate structure-property relationships. The alloy is, ideally, a spin-gapless semiconductor, but structural disorder destroys the spin-gapless character and drastically alters the transport behavior. Two types of CoFeCrAl films were grown by magnetron sputtering deposition at 973 K, namely polycrystalline films on Si substrates and epitaxial films on MgO (001) substrates. The resistivity decreases with increasing temperature, with relatively small temperature coefficients of –0.19 cm=K for the polycrystalline films and –0.12 cm=K for the epitaxial films. The residual resistivity of the polycrystalline films deposited …


Half-Metallic Magnetism In Ti3co5-Xfexb2, Rohit Pathak, Imran Ahamed, W. Y. Zhang, Shah Vallopilly, D. J. Sellmyer, Ralph Skomski, Arti Kashyap Feb 2017

Half-Metallic Magnetism In Ti3co5-Xfexb2, Rohit Pathak, Imran Ahamed, W. Y. Zhang, Shah Vallopilly, D. J. Sellmyer, Ralph Skomski, Arti Kashyap

Nebraska Center for Materials and Nanoscience: Faculty Publications

Bulk alloys and thin films of Fe-substituted Ti3Co5B2 have been investigated by first-principle density-functional calculations. The series, which is of interest in the context of alnico magnetism and spin electronics, has been experimentally realized in nanostructures but not in the bulk. Our bulk calculations predict paramagnetism for Ti3Co5B2, Ti3Co4FeB2 and Ti3CoFe4B2, whereas Ti3Fe5B2 is predicted to be ferromagnetic. The thin films are all ferromagnetic, indicating that moment formation may be facilitated at nanostructural …


Cooperative And Noncooperative Magnetization Reversal In Alnicos, Raplh Skomski, Liqin Ke, Matthew J. Kramer, Iver E. Anderson, C.Z. Wang, W.Y. Zhang, Jeff E. Shield, D. J. Sellmyer Feb 2017

Cooperative And Noncooperative Magnetization Reversal In Alnicos, Raplh Skomski, Liqin Ke, Matthew J. Kramer, Iver E. Anderson, C.Z. Wang, W.Y. Zhang, Jeff E. Shield, D. J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

It is investigated how magnetostatic interactions affect the coercivity of alnicotype magnets. Starting from exact micromagnetic relations, we analyze two limits, namely cooperative reversal processes operative on short lengths scales and noncooperative reversal processes on long length scales. In alnicos, intrawire interactions are predominantly cooperative, whereas interwire effects are typically noncooperative. However, the transition between the regimes depends on feature size and hysteresis-loop shape, and interwire cooperative effects are largest for nearly rectangular loops. Our analysis revises the common shape-anisotropy interpretation of alnicos.


Epitaxial Strain Controlled Magnetocrystalline Anisotropy In Ultrathin Ferh/Mgo Bilayers, Guohul Zheng, San-Huang Ke, Maosheng Miao, Jinwoong Kim, R, Ramesh, Nicholas Kioussis Jan 2017

Epitaxial Strain Controlled Magnetocrystalline Anisotropy In Ultrathin Ferh/Mgo Bilayers, Guohul Zheng, San-Huang Ke, Maosheng Miao, Jinwoong Kim, R, Ramesh, Nicholas Kioussis

Nebraska Center for Materials and Nanoscience: Faculty Publications

Using ab initio electronic structure calculations we have investigated the effect of epitazial strain on the magnetocrystalline anisotropy (MCA) of ultrathin FeRh/MgO heterostructures. Analysis of the energy- and k-resolved distribution of the orbital character of the band structure reveals that MCA largely arises from the spin-orbit coupling (SOC) between dx2-y2 and dxz/dyz orbitlas of Fe atoms at the FeRh/MhO interface. We demonstrate that the strain has significant effects on the MCA: It not only affects the value of the MCA but also induces a switching of the magnetic easy axis from perpendicular on in-plane direction. The …


First-Principle Investigation Of Structural, Electronic And Magnetic Properties Of Co2vin And Covin Heusler Compounds, Zipporah Muthui, Rohit Pathak, Robinson Musembi, Julius Mwabora, Ralph Skomski, Arti Kashyap Jan 2017

First-Principle Investigation Of Structural, Electronic And Magnetic Properties Of Co2vin And Covin Heusler Compounds, Zipporah Muthui, Rohit Pathak, Robinson Musembi, Julius Mwabora, Ralph Skomski, Arti Kashyap

Nebraska Center for Materials and Nanoscience: Faculty Publications

Investigation of the structural, electronic and magnetic properties of full-Heusler Co2VIn as well as half-Heusler CoVIn Cobalt based Heusler compounds using density functional theory (DFT) leads to the general conclusion that Co2VIn and CoVIn are half-metallic materials with a gap at the Fermi level in the minority states and majority states respectively. A Hubbard-like Coulomb correlation term U has been included in the DFT (DFT+U) for the computation of the electronic and magnetic properties of the compounds. The structural properties have been calculated for the paramagnetic and ferromagnetic phases, and both Co2VIn …


Effect Of Disorder On The Magnetic And Electronic Structure Of A Prospective Spin-Gapless Semiconductor Mncrval, P. Kharel, J. Herran, P. Lukashev, Y. Jin, J. Waybright, S. Gilbert, B. Staten, P. Gray, S. Valloppilly, Y. Huh, D. J. Sellmyer Jan 2017

Effect Of Disorder On The Magnetic And Electronic Structure Of A Prospective Spin-Gapless Semiconductor Mncrval, P. Kharel, J. Herran, P. Lukashev, Y. Jin, J. Waybright, S. Gilbert, B. Staten, P. Gray, S. Valloppilly, Y. Huh, D. J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Recent discovery of a new class of materials, spin-gapless semiconductors (SGS), has attracted considerable attention in the last few years, primarily due to potential applications in the emerging field of spin-based electronics (spintronics). Here, we investigate structural, electronic, and magnetic properties of one potential SGS compound, MnCr-VAl, using various experimental and theoretical techniques. Our calculations show that this material exhibits ≈ 0.5 eV band gap for the majority-spin states, while for the minority-spin it is nearly gapless. The calculated magnetic moment for the com- pletely ordered structure is 2.9 μB/f.u., which is different from our experimentally measured value …


Controlling The Microstructure And Associated Magnetic Properties Of Ni0.2mn3.2ga0.6 Melt-Spun Ribbons By Annealing, Mahmud Khan, Ohud Alshammari, Balamurugan Balamurugan, Bhaskar Das, David J. Sellmyer, Ahmad Us Saleheen, Shane Stadler Jan 2017

Controlling The Microstructure And Associated Magnetic Properties Of Ni0.2mn3.2ga0.6 Melt-Spun Ribbons By Annealing, Mahmud Khan, Ohud Alshammari, Balamurugan Balamurugan, Bhaskar Das, David J. Sellmyer, Ahmad Us Saleheen, Shane Stadler

Nebraska Center for Materials and Nanoscience: Faculty Publications

Here we report on the structural and magnetic properties of Ni0.2Mn3.2Ga0.6 melt- spun ribbons. The as-spun ribbons were found to exhibit mixed cubic phases that transform to non-cubic structure upon annealing. Additionally, an amorphous phase was found to co-exist in all ribbons. The SEM images show that minor grain forma- tion occurs on the as-spun ribbons. However, the formation of extensive nano-grains was observed on the surfaces of the annealed ribbons. While the as-spun ribbons exhibit predominantly paramagnetic behavior, the ribbons annealed under various thermal conditions were found to be ferromagnetic with a Curie temperature …


Effect Of Fe Substitution On The Structural, Magnetic And Electron-Transport Properties Of Half-Metallic Co2tisi, Y. Jin, J. Waybright, P. Kharel, I. Tutic, J. Herran, P. Lukashev, S. Valloppilly, D. J. Sellmyer Jan 2017

Effect Of Fe Substitution On The Structural, Magnetic And Electron-Transport Properties Of Half-Metallic Co2tisi, Y. Jin, J. Waybright, P. Kharel, I. Tutic, J. Herran, P. Lukashev, S. Valloppilly, D. J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

The structural, magnetic and electron-transport properties of Co2Ti1-xFexSi (x = 0, 0.25, 0.5) ribbons prepared by arc-melting and melt-spinning were investi- gated. The rapidly quenched Co2Ti0.5Fe0.5Si crystallized in the cubic L21 structure whereas Co2Ti0.75Fe0.25Si and Co2TiFe0Si showed various degrees of B2-type disorder. At room temperature, all the samples are ferromagnetic, and the Curie tem- perature increased from 360 K for Co2TiSi to about 800 K for Co2Ti0.5Fe0.5Si. The measured …


Ch3Nh3Pbi3 Perovskites: Ferroelasticity Revealed, Evgheni Strelcov, Qingfeng Dong, Tao Li, Jungseok Chae, Yuchuan Shao, Yehao Deng, Alexei Gruverman, Jinsong Huang, Andrea Centrone Jan 2017

Ch3Nh3Pbi3 Perovskites: Ferroelasticity Revealed, Evgheni Strelcov, Qingfeng Dong, Tao Li, Jungseok Chae, Yuchuan Shao, Yehao Deng, Alexei Gruverman, Jinsong Huang, Andrea Centrone

Alexei Gruverman Publications

Ferroelectricity has been proposed as a plausible mechanism to explain the high photovoltaic conversion efficiency in organic-inorganic perovskites; however, convincing experimental evidence in support of this hypothesis is still missing. Identifying and distinguishing ferroelectricity from other properties, such as piezoelectricity, ferroelasticity, etc., is typically nontrivial because these phenomena can coexist in many materials. In this work, a combination of microscopic and nanoscale techniques provides solid evidence for the existence of ferroelastic domains in both CH3NH3PbI3 polycrystalline films and single crystals in the pristine state and under applied stress. Experiments show that the configuration of CH …


Nonlinear Dynamic Studies Of Pattern-Forming And Biomedical Systems, Doaa Taha Jan 2017

Nonlinear Dynamic Studies Of Pattern-Forming And Biomedical Systems, Doaa Taha

Wayne State University Dissertations

Nonlinear phenomena are ubiquitous in nature and in almost every discipline of science. Various nonlinear dynamic theories are being developed to investigate a wide range of complex nonlinear systems. In this work, we study two types of nonlinear phenomena. The first type involves understanding and controlling the properties and dynamics of two-dimensional (2D) material systems. We develop a binary phase field crystal (PFC) model which simultaneously addresses diffusive dynamics of large-scale systems and resolves material microstructures, and apply the model to the study of two material systems. (1) We use this PFC model to investigate the self assembly of 2D …


Tunneling Magnetoresistance Sensors With Different Coupled Free Layers, Yen-Fu Liu, Xiaolu Yin, Yi Yang, Dan Ewing, Paul J. De Rego, Sy-Hwang Liou Jan 2017

Tunneling Magnetoresistance Sensors With Different Coupled Free Layers, Yen-Fu Liu, Xiaolu Yin, Yi Yang, Dan Ewing, Paul J. De Rego, Sy-Hwang Liou

Nebraska Center for Materials and Nanoscience: Faculty Publications

Large differences of magnetic coercivity (HC), exchange coupling field (HE), and tun- neling magnetoresistance ratio (TMR) in magnetic tunnel junctions with different coupled free layers are discussed. We demonstrate that the magnetization behavior of the free layer is not only dominated by the interfacial barrier layer but also affected largely by the magnetic or non-magnetic coupled free layers. All these parameters are sensitively controlled by the magnetic nanostructure, which can be tuned also by the magnetic annealing process. The optimized sensors exhibit a large field sensitivity of up to 261%/mT in the region of the reversal synthetic ferri- magnet at …


Anomalous Photovoltaic Effect In Organic-Inorganic Hybrid Perovskite Solar Cells, Yongbo Yuan, Tao Li, Qi Wang, Jie Xing, Alexei Gruverman, Jinsong Huang Jan 2017

Anomalous Photovoltaic Effect In Organic-Inorganic Hybrid Perovskite Solar Cells, Yongbo Yuan, Tao Li, Qi Wang, Jie Xing, Alexei Gruverman, Jinsong Huang

Alexei Gruverman Publications

Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device’s open-circuit voltage (VOC) that is much larger than the bandgap of OIHPs. The persistent VOC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows …