Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Physics

Spin crossover

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Condensed Matter Physics

Magnetic Field Perturbations To A Soft X-Ray-Activated Fe (Ii) Molecular Spin State Transition, Guanhua Hao, Alpha T. N’Diaye, Thilini K. Ekanayaka, Ashley S. Dale, Xuanyuan Jiang, Esha Mishra, Corbyn Mellinger, Saeed Yazdani, John W. Freeland, Jian Zhang, Ruihua Cheng, Xiaoshan Xu, Peter Dowben Oct 2021

Magnetic Field Perturbations To A Soft X-Ray-Activated Fe (Ii) Molecular Spin State Transition, Guanhua Hao, Alpha T. N’Diaye, Thilini K. Ekanayaka, Ashley S. Dale, Xuanyuan Jiang, Esha Mishra, Corbyn Mellinger, Saeed Yazdani, John W. Freeland, Jian Zhang, Ruihua Cheng, Xiaoshan Xu, Peter Dowben

Peter Dowben Publications

The X-ray-induced spin crossover transition of an Fe (II) molecular thin film in the presence and absence of a magnetic field has been investigated. The thermal activation energy barrier in the soft X-ray activation of the spin crossover transition for [Fe{H2B(pz)2 }2 (bipy)] molecular thin films is reduced in the presence of an applied magnetic field, as measured through X-ray absorption spectroscopy at various temperatures. The influence of a 1.8 T magnetic field is sufficient to cause deviations from the expected exponential spin state transition behavior which is measured in the field free case. We find …


Nonvolatile Voltage Controlled Molecular Spin‐State Switching For Memory Applications, Thilini K. Ekanayaka, Guanhua Hao, Aaron Mosey, Ashley S. Dale, Xuanyuan Jiang, Andrew J. Yost, Keshab R. Sapkota, George T. Wang, Jian Zhang, Alpha T. N’Diaye, Andrew Marshall, Ruihua Cheng, Azad Naeemi, Xiaoshan Xu, Peter Dowben Mar 2021

Nonvolatile Voltage Controlled Molecular Spin‐State Switching For Memory Applications, Thilini K. Ekanayaka, Guanhua Hao, Aaron Mosey, Ashley S. Dale, Xuanyuan Jiang, Andrew J. Yost, Keshab R. Sapkota, George T. Wang, Jian Zhang, Alpha T. N’Diaye, Andrew Marshall, Ruihua Cheng, Azad Naeemi, Xiaoshan Xu, Peter Dowben

Peter Dowben Publications

Nonvolatile, molecular multiferroic devices have now been demonstrated, but it is worth giving some consideration to the issue of whether such devices could be a competitive alternative for solid-state nonvolatile memory. For the Fe (II) spin crossover complex [Fe{H2B(pz)2}2(bipy)], where pz = tris(pyrazol-1-yl)-borohydride and bipy = 2,20-bipyridine, voltage-controlled isothermal changes in the electronic structure and spin state have been demonstrated and are accompanied by changes in conductance. Higher conductance is seen with [Fe{H2B(pz)2}2(bipy)] in the high spin state, while lower conductance occurs for the low spin state. Plausibly, …


Site Selective Adsorption Of The Spin Crossover Complex Fe(Phen)2(Ncs)2 On Au(111), Sumit Beniwal, Suchetana Sarkar, Felix Baier, Birgit Weber, Peter Dowben, Axel Enders Jul 2020

Site Selective Adsorption Of The Spin Crossover Complex Fe(Phen)2(Ncs)2 On Au(111), Sumit Beniwal, Suchetana Sarkar, Felix Baier, Birgit Weber, Peter Dowben, Axel Enders

Peter Dowben Publications

The iron(II) spin crossover complex Fe(1,10-phenanthroline)2(NCS)2, dubbed Fe-phen, has been studied with scanning tunneling microscopy, after adsorption on the 'herringbone' reconstructed surface of Au(111) for sub-monolayer coverages. The Fe-phen molecules attach, through their NCS-groups, to the Au atoms of the fcc domains of the reconstructed surface only, thereby lifting the herringbone reconstruction. The molecules stack to form 1D chains, which run along the Au[110] directions. Neighboring Fe-phen molecules are separated by approximately 2.65 nm, corresponding to 9 atomic spacings in this direction. The molecular axis, defined by the two phenanthroline groups, is aligned perpendicular to the …


Quantitative Study Of The Energy Changes In Voltage-Controlled Spin Crossover Molecular Thin Films, Aaron Mosey, Ashley S. Dale, Guanhua Hao, Alpha T. N’Diaye, Peter Dowben, Ruihua Cheng Jan 2020

Quantitative Study Of The Energy Changes In Voltage-Controlled Spin Crossover Molecular Thin Films, Aaron Mosey, Ashley S. Dale, Guanhua Hao, Alpha T. N’Diaye, Peter Dowben, Ruihua Cheng

Peter Dowben Publications

Voltage-controlled nonvolatile isothermal spin state switching of a [Fe{H2B(pz)2}2(bipy)] (pz=tris(pyrazol-1-1y)-borohydride, bipy=2,2’-bipyridine) film, more than 40 to 50 molecular layers thick, is possible when it is adsorbed onto a molecular ferroelectric substrate. Accompanying this high spin and low spin state switching, at room temperature, we observe a remarkable change in conductance, thereby allowing not only non-volatile voltage control of the spin state (“write”), but also current sensing of the molecular spin state (“read”). Monte Carlo Ising model simulations of the high spin state occupancy, extracted from x-ray absorption spectroscopy, indicate that the energy difference between the low …