Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Condensed Matter Physics

Ferromagnetic Liquid Droplets With Adjustable Magnetic Properties, Xuefei Wu, Robert Streubel, Xubo Liu, Paul Y. Kim, Yu Chai, Qin Hu, Dong Wang, Peter Fischer, Thomas P. Russell Feb 2021

Ferromagnetic Liquid Droplets With Adjustable Magnetic Properties, Xuefei Wu, Robert Streubel, Xubo Liu, Paul Y. Kim, Yu Chai, Qin Hu, Dong Wang, Peter Fischer, Thomas P. Russell

Department of Physics and Astronomy: Faculty Publications

The assembly and jamming of magnetic nanoparticles (NPs) at liquid–liquid interfaces is a versatile platform to endow structured liquid droplets with a magnetization, i.e., producing ferromagnetic liquid droplets (FMLDs). Here, we use hydrodynamics experiments to probe how the magnetization of FMLDs and their response to external stimuli can be tuned by chemical, structural, and magnetic means. The remanent magnetization stems from magnetic NPs jammed at the liquid–liquid interface and dispersed NPs magneto-statically coupled to the interface. FMLDs form even at low concentrations of magnetic NPs when mixing nonmagnetic and magnetic NPs, since the underlying magnetic dipole-driven clustering of magnetic NP-surfactants …


Perspective: Ferromagnetic Liquids, Robert Streubel, Xubo Liu, Xuefei Wu, Thomas P. Russell Jun 2020

Perspective: Ferromagnetic Liquids, Robert Streubel, Xubo Liu, Xuefei Wu, Thomas P. Russell

Robert Streubel Papers

Mechanical jamming of nanoparticles at liquid-liquid interfaces has evolved into a versatile approach to structure liquids with solid-state properties. Ferromagnetic liquids obtain their physical and magnetic properties, including a remanent magnetization that distinguishes them from ferrofluids, from the jamming of magnetic nanoparticles assembled at the interface between two distinct liquids to minimize surface tension. This perspective provides an overview of recent progress and discusses future directions, challenges and potential applications of jamming magnetic nanoparticles with regard to 3D nano-magnetism. We address the formation and characterization of curved magnetic geometries, and spin frustration between dipole-coupled nanostructures, and advance our understanding of …