Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Condensed Matter Physics

Perspective: Ferromagnetic Liquids, Robert Streubel, Xubo Liu, Xuefei Wu, Thomas P. Russell Jun 2020

Perspective: Ferromagnetic Liquids, Robert Streubel, Xubo Liu, Xuefei Wu, Thomas P. Russell

Robert Streubel Papers

Mechanical jamming of nanoparticles at liquid-liquid interfaces has evolved into a versatile approach to structure liquids with solid-state properties. Ferromagnetic liquids obtain their physical and magnetic properties, including a remanent magnetization that distinguishes them from ferrofluids, from the jamming of magnetic nanoparticles assembled at the interface between two distinct liquids to minimize surface tension. This perspective provides an overview of recent progress and discusses future directions, challenges and potential applications of jamming magnetic nanoparticles with regard to 3D nano-magnetism. We address the formation and characterization of curved magnetic geometries, and spin frustration between dipole-coupled nanostructures, and advance our understanding of …


Structure And Magnetism Of Co2ge Nanoparticles, Onur Tosun, Frank M. Abel, Balamurugan Balasubramanian, Ralph Skomski, David J. Sellmyer, George C. Hadjipanayis Jan 2019

Structure And Magnetism Of Co2ge Nanoparticles, Onur Tosun, Frank M. Abel, Balamurugan Balasubramanian, Ralph Skomski, David J. Sellmyer, George C. Hadjipanayis

Nebraska Center for Materials and Nanoscience: Faculty Publications

The structural and magnetic properties of Co2Ge nanoparticles (NPs) prepared by the cluster-beam deposition (CBD) technique have been investigated. As-made particles with an average size of 5.5 nm exhibit a mixture of hexagonal and orthorhombic crystal structures. Thermomagnetic measurements showed that the as-made particles are superparamagnetic at room temperature with a blocking temperature (TB) of 20 K. When the particles are annealed at 823 K for 12 h, their size is increased to 13 nm and they develop a new orthorhombic crystal structure, with a Curie temperature (TC) of 815 K. This …


Structure And Magnetism Of Mn5ge3 Nanoparticles, Onur Tosun, Mohammed Salehi-Fashami, Balamurugan Balasubramanian, Ralph Skomski, David J. Sellmyer, George C. Hadjipanayis Jan 2018

Structure And Magnetism Of Mn5ge3 Nanoparticles, Onur Tosun, Mohammed Salehi-Fashami, Balamurugan Balasubramanian, Ralph Skomski, David J. Sellmyer, George C. Hadjipanayis

Nebraska Center for Materials and Nanoscience: Faculty Publications

In this work, we investigated the magnetic and structural properties of isolated Mn5Ge3 nanoparticles prepared by the cluster-beam deposition technique. Particles with sizes between 7.2 and 12.6 nm were produced by varying the argon pressure and power in the cluster gun. X-ray diffraction (XRD)and selected area diffraction (SAD) measurements show that the nanoparticles crystallize in the hexagonal Mn5Si3-type crystal structure, which is also the structure of bulk Mn5Ge3. The temperature dependence of the magnetization shows that the as-made particles are ferromagnetic at room temperature and have slightly different Curie …