Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

14,773 Full-Text Articles 26,718 Authors 4,867,221 Downloads 179 Institutions

All Articles in Materials Science and Engineering

Faceted Search

14,773 full-text articles. Page 3 of 505.

Antibacterial Cerium-Containing Glazes For Ceramic Tiles, Ivan LEVITSKIY, Mastura Aripova, Mihail Dyadenko, Dar’ya KUCHEROVA, Artem GOLUB 2024 Belarusian State Technological University, Minsk, Belarus

Antibacterial Cerium-Containing Glazes For Ceramic Tiles, Ivan Levitskiy, Mastura Aripova, Mihail Dyadenko, Dar’Ya Kucherova, Artem Golub

CHEMISTRY AND CHEMICAL ENGINEERING

The results of research on the production of semi-fritted cerium-containing glazes used for ceramic tiles are presented.

A multicomponent raw material mixture based on dolomite, cerium dioxide CeO2, aluminosilicate multicalcium frit and permanent components including feldspar, alumina and clay components (kaolin and refractory clay) is used to produce glazes.

The characteristics of the obtained coatings were studied: appearance, technological and physico-chemical properties, including antibacterial properties in relation to the strains of Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538. The influence of temperature parameters on the formation of glaze coatings, as well as their structure and phase …


Surface Treatments' Effects On The Capacitor's Dielectric Performance Under Electro-Thermal Stresses, Haider. M. Umran, Feipeng Wang 2024 Electrical and Electronic Engineering Department, Faculty of Engineering, University of Kerbala, Karbala, Iraq

Surface Treatments' Effects On The Capacitor's Dielectric Performance Under Electro-Thermal Stresses, Haider. M. Umran, Feipeng Wang

Karbala International Journal of Modern Science

Biaxial-oriented polypropylene (BOPP) films are characterized by unfavorable aging behavior because of their poor susceptibility to high temperatures, humidity, and high electric fields. This makes them unqualified to withstand harsh operating conditions, such as in capacitor applications. This study investigates the impact of annealing BOPP samples at 100 °C for five hours after fluorination at different times (15, 30, and 60 minutes) on their electrical and mechanical performance under electro-thermal stresses. Scanning electron microscope (SEM) images confirm that there is an increase in surface roughness and the formation of a dense layer of fluorine-containing groups monotonically with fluorination time. So, …


Towards A Practical Method For Monitoring Kinetic Processes In Polymers With Low-Frequency Raman Spectroscopy, Robert Vito Chimenti 2024 Rowan University

Towards A Practical Method For Monitoring Kinetic Processes In Polymers With Low-Frequency Raman Spectroscopy, Robert Vito Chimenti

Theses and Dissertations

Unlike liquids and crystalline solids, glassy materials exist in a constant state of structural nonequilibrium. Therefore, a comprehensive understanding of material kinetics is critical for understanding the structure-property-processing relationships of polymeric materials. Amorphous materials universally display low-frequency Raman features related to the phonon density of states resulting in a broad disorder band for Raman shifts below 100 cm-1, which is related to the conformational entropy and the modulus. This disorder band is dominated by the Boson peak, a feature due to phonon scattering because of disorder and can be related to the transverse sound velocity of the material, and a …


Low Impedance, Durable, Self-Adhesive Hydrogel Epidermal Electrodes For Electrophysiology Recording, Naiyan Wu 2024 Washington University in St. Louis

Low Impedance, Durable, Self-Adhesive Hydrogel Epidermal Electrodes For Electrophysiology Recording, Naiyan Wu

McKelvey School of Engineering Theses & Dissertations

Traditional electrodes used for electrophysiology recording, characterized by their hard, dry, and inanimate nature, are fundamentally mismatched with the soft, moist, and bioactive characteristics of biological tissues, leading to suboptimal skin-electrode interfaces. Hydrogel materials, mirroring the high water content and biocompatibility of biological tissues, emerge as promising candidates for epidermal electronic materials due to their adjustable physicochemical properties. However, challenges such as inadequate electrical conductivity, elevated skin impedance, unreliable adhesion in moist conditions, and performance decline from dehydration have significantly restricted the efficacy and applicability of hydrogel-based electrodes. In this thesis, we report a high-performance hydrogel epidermal electrode patch for …


Deep Selenium Donors In Zngep2 Crystals: An Electron Paramagnetic Resonance Study Of A Nonlinear Optical Material, Timothy D. Gustafson, Larry E. Halliburton, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, J. Jesenovec, Kent L. Averett, Jeremy Slagle 2024 Air Force Institute of Technology

Deep Selenium Donors In Zngep2 Crystals: An Electron Paramagnetic Resonance Study Of A Nonlinear Optical Material, Timothy D. Gustafson, Larry E. Halliburton, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, J. Jesenovec, Kent L. Averett, Jeremy Slagle

Faculty Publications

Zinc germanium diphosphide (ZnGeP2) is a ternary semiconductor best known for its nonlinear optical properties. A primary application is optical parametric oscillators operating in the mid-infrared region. Controlled donor doping provides a method to minimize the acceptor-related absorption bands that limit the output power of these devices. In the present study, a ZnGeP2 crystal is doped with selenium during growth. Selenium substitutes for phosphorus and serves as a deep donor. Significant concentrations of native defects (zinc vacancies, germanium-on-zinc antisites, and phosphorous vacancies) are also present in the crystal. Electron paramagnetic resonance (EPR) is used to establish the …


Processing And Testing Commodity And Engineering Cfrtp Composites, Delia M. Derner, Kristine Osorio 2024 Winona State University

Processing And Testing Commodity And Engineering Cfrtp Composites, Delia M. Derner, Kristine Osorio

Research & Creative Achievement Day

Commodity thermoplastic polymers provide good load transfer to and protection of the reinforcing fibers.  However, their mechanical properties are inferior to high-performance thermoplastic polymer composites.  Findings of preliminary research conducted at WSU showed that continuous fiber reinforced (CFR) commodity polymers such as PETG and PP have better Izod impact resistance than their high-performance CFR counterparts.  Further investigation of these findings is conducted in this research project.  Quasi-isotropic laminates of GF/PETG and GF/PET-am are fabricated and tested in drop weight impact.  The results will be compared with previously determined results of high-performance CF/PPS, CF/PA12 and GF/PPS.  The samples are fabricated using …


Low-Velocity Drop Weight Impact And Compression After Impact Properties Of Symmetric Quasi-Isotropic Cfrtp Composites, Youyi Zhou, Kyungbin Min 2024 Winona State University

Low-Velocity Drop Weight Impact And Compression After Impact Properties Of Symmetric Quasi-Isotropic Cfrtp Composites, Youyi Zhou, Kyungbin Min

Research & Creative Achievement Day

Low-velocity impact properties and residual compression strength after impact performance are used to evaluate composite materials for many applications. In this research, low-velocity drop-weight impact and compression after impact performance of four continuous fiber reinforcement thermoplastic (CFRTP) composites are investigated. Quasi-isotropic samples of GF/PP, CF-PA12, CF-PA6, GF-PA6 were fabricated and tested according to ASTM standards. Three energy levels of 10, 15, and 20 J/mm, were employed in this research. Results indicate that GF/PP exhibits the highest damage resistance and rebound-ability, evidenced by its minimal indentation and damage area, the highest significant damage threshold force, and the highest ratio of impact …


Ergo Carbon Workspace, Ethan C. Atkinson, Joshua N. Hanner, Rachel A. Henderson, Anders Nielsen, Mohamed A. Salat 2024 Winona State University

Ergo Carbon Workspace, Ethan C. Atkinson, Joshua N. Hanner, Rachel A. Henderson, Anders Nielsen, Mohamed A. Salat

Research & Creative Achievement Day

The goal of the Ergo Carbon Workspace is to create a monitor stand that is both lightweight and easily transportable, catering to the needs of modern workspaces. Constructed from carbon fiber, epoxy resin, and a honeycomb core, this design emphasizes portability without sacrificing durability. Incorporating aerospace-grade honeycomb core as well as braided carbon fiber epoxy struts bolsters structural integrity while maintaining a lightweight part. The Ergo Carbon Workspace design facilitates effortless assembly and disassembly, simplifying transportation and packaging. Through the utilization of composite materials, the stand achieves an optimal balance of strength and portability. Ergo Carbon Workspace will also incorporate …


Application Of The Immobilized Low-Activity Waste Glass Corrosion Model To The Static Dissolution Of 24 Statistically-Designed Alkali-Borosilicate Waste Glasses, Sebastien N. Kerisit, James J. Neeway, Charmayne E. Lonergan, Benjamin Parruzot, Jarrod V. Crum, Richard C. Daniel, Gary L. Smith, R. Matthew Asmussen 2024 Missouri University of Science and Technology

Application Of The Immobilized Low-Activity Waste Glass Corrosion Model To The Static Dissolution Of 24 Statistically-Designed Alkali-Borosilicate Waste Glasses, Sebastien N. Kerisit, James J. Neeway, Charmayne E. Lonergan, Benjamin Parruzot, Jarrod V. Crum, Richard C. Daniel, Gary L. Smith, R. Matthew Asmussen

Materials Science and Engineering Faculty Research & Creative Works

Glass corrosion models that capture the complex mechanisms of the glass-water reaction enable the prediction of nuclear waste glass durability in disposal scenarios. Parameterization of such models is challenging because of the need to capture changes in corrosion behavior with time, reaction conditions, and glass composition. Here, we describe and employ the ILAW (immobilized low-activity waste) glass corrosion model (IGCM) in geochemical simulations of static dissolution tests, at two temperatures (40 °C and 90 °C), for a matrix of 24 enhanced low-activity waste (eLAW) glasses statistically designed to cover a processable composition space defined by 8 major glass components (Al …


Decoding Crystallization Behavior Of Aluminoborosilicate Glasses: From Structural Descriptors To Quantitative Structure – Property Relationship (Qspr) Based Predictive Models, Yingcheng Zhang, Marco Bertani, Alfonso Pedone, Randall E. Youngman, Gregory Tricot, Aditya Kumar, Ashutosh Goel 2024 Missouri University of Science and Technology

Decoding Crystallization Behavior Of Aluminoborosilicate Glasses: From Structural Descriptors To Quantitative Structure – Property Relationship (Qspr) Based Predictive Models, Yingcheng Zhang, Marco Bertani, Alfonso Pedone, Randall E. Youngman, Gregory Tricot, Aditya Kumar, Ashutosh Goel

Materials Science and Engineering Faculty Research & Creative Works

Successful decoding of structural descriptors controlling the crystallization in multicomponent functional glasses can pave the way for the transition from the trial-and-error approach and empirical modeling for glass/glass-ceramic composition design toward more rational and scientifically rigorous Quantitative Structure-Property Relationship (QSPR) based models. However, due to the compositional and structural complexity of multicomponent glasses and the longer time and length scales associated with nucleation, the development and validation of QSPR models are still in it's infancy. The work presented in the article is an attempt to leap forward in this pursuit by combining the strengths of experimental and computational materials science …


Research On 3d Printing Resin Exposure Properties And Its Application On Centrifugal Microfluidic Platform Based On Fluorescence Detection, Zheng Qiao 2024 Louisiana State University and Agricultural and Mechanical College

Research On 3d Printing Resin Exposure Properties And Its Application On Centrifugal Microfluidic Platform Based On Fluorescence Detection, Zheng Qiao

LSU Doctoral Dissertations

This dissertation encapsulates significant advancements in the field of SLA 3D printing and centrifugal microfluidics. Central to the research is the development of a novel mathematical model for predicting trapped resin thickness in SLA 3D printing, a groundbreaking contribution that addresses a critical aspect of printing intricate structures. This model, the first to establish a mathematical relationship for resin thickness, is rooted in a comprehensive study of the resin curing process. The research leverages the concept of 'critical dosage' for resin curing, leading to a more refined and theoretically grounded approach for calculating curing thickness. Experimentation further validates the model, …


Globular Protein For Surface Modification Of Cellulosecontaining Materials, Nodira Saydaliyeva 2024 Tashkent Institute of Textile and Light Industry, PhD, saydalieva1nodi@gmail.com, https://orcid.org/0000-0002-2876-7065Tashkent city, Republic of Uzbekistan.

Globular Protein For Surface Modification Of Cellulosecontaining Materials, Nodira Saydaliyeva

Technical science and innovation

The purpose of this work is the chemical modification of cotton fabrics with natural globular protein. Modification was carried out in the process of finishing cotton fabrics, after decoction and bleaching in a continuous mode. The effect of modification on the strength, protein content and functional groups of cotton fabric has been studied. According to the results obtained using the AUTOGRAPH AGS-N machine, it was found that the modification of cotton fabrics with a solution of globular protein increases the strength of the treated fabrics, depending on the concentration of the modifier and the temperature regime. Treatment with a highly …


A Guide To Fifty Years Of Research At Montana Tech: Part 3-Decontamination Of Ratioactively Contaminated Steel By Melt Refining/Slagging Processing, Larry G. Twidwell, Samuel A. Worcester 2024 Montana Technological University

A Guide To Fifty Years Of Research At Montana Tech: Part 3-Decontamination Of Ratioactively Contaminated Steel By Melt Refining/Slagging Processing, Larry G. Twidwell, Samuel A. Worcester

Metallurgy

This presentation includes a discussion of the research conducted at Montana Tech in the Department of Metallurgical and Materials Engineering. The discussion is focused on Decontamination of Radioactively Contaminated Steel by Melt Refining/Slagging. This presentation is based on the research of Master of Science graduate students, industrial and academic colleagues, at the Montana College of Mineral Science and Technology (which morphed to Montana Tech [1977], then to Montana Tech of The University of Montana [2000], then to Montana Technological University [2019]). The referenced work of each of the graduate students in this presentation is gratefully acknowledged. The following summary presentation …


Starfish: A Compact, Biomimetic, And Adaptive Shape Memory Alloy Orbital Debris Remover, Katelyn Branaman 2024 Embry-Riddle Aeronautical University

Starfish: A Compact, Biomimetic, And Adaptive Shape Memory Alloy Orbital Debris Remover, Katelyn Branaman

Doctoral Dissertations and Master's Theses

This thesis aims to turn the tides on the orbital debris issue through the fabrication and demonstration of a compact, biomimetic, and adaptive shape memory alloy actuated orbital debris remover. The design, referred to as Starfish, is discussed in detail along with its fabrication process and object capture ability. A hard skeleton crafted from PETG was combined with shape memory alloy wires and extension springs to create a biomimetic structure that operates similar to the human hand, capable of gripping a wide range of objects. Relevant simulations were performed and discussed, the iterative fabrication process used to create each component …


Advancements In Characterization Of Ancient Potteries From Southeast Asia: A Review Of Analytical Techniques, Chitnarong Sirisathitkul 2024 Division of Physics, School of Science, Walailak University, Nakhon Si Thammarat 80160, Thailand

Advancements In Characterization Of Ancient Potteries From Southeast Asia: A Review Of Analytical Techniques, Chitnarong Sirisathitkul

Makara Journal of Science

Ancient potteries offer valuable information regarding technological advancements, life dynamics, cultural diversity, and trade routes in the past. Earthenware, stoneware, and porcelain from Southeast Asia have been characterized using several analytical techniques, as reviewed in this article. Fluorescent and diffracted X-rays give rise to elemental and phase compositions, respectively. Examination of molecular bonds requires vibrational spectroscopy, which is useful for the identification of organic materials in ancient potteries. With the advent of portable X-ray fluorescence and Raman spectrometry, on-site analysis of archeological ceramics is now possible. For in-depth analysis, synchrotron light sources can provide new insights into artifacts through X-ray …


A Comparison Of Beamforming Characteristics In Isotropic And Composite Plate Structures For Use In Structural Health Monitoring, Sarah Ketchersid 2024 Embry-Riddle Aeronautical University

A Comparison Of Beamforming Characteristics In Isotropic And Composite Plate Structures For Use In Structural Health Monitoring, Sarah Ketchersid

Doctoral Dissertations and Master's Theses

Structural health monitoring in plate-like simple structures using phased array beamsteering of guided Lamb waves is useful in damage detection and evaluation efforts. Lamb waves can be effectively used for beamsteering using a linear array. The experimentation primarily focuses on beamsteering in the aluminum panel, which involves developing a simulation based on extracted data to visualize the dispersion of waves across the panel. By evaluating parameters such as slowness, velocity, and amplitude direction and variation for a specific metallic plate, the wavefront generated by a single wave source can be represented as a function of propagation angle and distance from …


Micropatterning And Functionalization Of Single Layer Graphene: Tuning Its Electron Transport Properties, Miao-Miao Cui, Lian-Huan Han, Lan-Ping Zeng, Jia-Yao Guo, Wei-Ying Song, Chuan Liu, Yuan-Fei Wu, Shi-Yi Luo, Yun-Hua Liu, Dong-Ping Zhan 2024 Department of Chemistry, College of Chemistry and Chemical Engineering; State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS); Engineering Research Center of Electrochemical Technologies of Ministry of Education; Xiamen University; Xiamen 361005, China

Micropatterning And Functionalization Of Single Layer Graphene: Tuning Its Electron Transport Properties, Miao-Miao Cui, Lian-Huan Han, Lan-Ping Zeng, Jia-Yao Guo, Wei-Ying Song, Chuan Liu, Yuan-Fei Wu, Shi-Yi Luo, Yun-Hua Liu, Dong-Ping Zhan

Journal of Electrochemistry

As a promising 2D material, graphene exhibits excellent physical properties including single-atom-scale thickness and remarkably high charge carrier mobility. However, its semi-metallic nature with a zero bandgap poses challenges for its application in high-performance field-effect transistors (FETs). In order to overcome these limitations, various approaches have been explored to modulate graphene's bandgap, including nanoscale confinement, external field induction, doping, and chemical micropatterning. Nevertheless, the stability and controllability still need to be improved. In this study, we propose a feasible method that combines electrochemical bromination and photolithography to precisely tune the electron transport properties of single layer graphene (SLG). Through this …


Effect Of Fabrication Parameters On The Ferroelectricity Of Hafnium Zirconium Oxide Films: A Statistical Study, Guillermo A. Salcedo, Ahmad E. Islam, Elizabeth Reichley, Michael Dietz, Christine M. Schubert Kabban, Kevin D. Leedy, Tyson C. Back, Weison Wang, Andrew Green, Timothy S. Wolfe, James M. Sattler 2024 Air Force Institute of Technology

Effect Of Fabrication Parameters On The Ferroelectricity Of Hafnium Zirconium Oxide Films: A Statistical Study, Guillermo A. Salcedo, Ahmad E. Islam, Elizabeth Reichley, Michael Dietz, Christine M. Schubert Kabban, Kevin D. Leedy, Tyson C. Back, Weison Wang, Andrew Green, Timothy S. Wolfe, James M. Sattler

Faculty Publications

Ferroelectricity in hafnium zirconium oxide (Hf1−xZrxO2) and the factors that impact it have been a popular research topic since its discovery in 2011. Although the general trends are known, the interactions between fabrication parameters and their effect on the ferroelectricity of Hf1−xZrxO2 require further investigation. In this paper, we present a statistical study and a model that relates Zr concentration (x), film thickness (tf), and annealing temperature (Ta) with the remanent polarization (Pr) in tungsten (W)-capped Hf1−xZrxO2. …


Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin 2024 State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin

Journal of Electrochemistry

Ammonia (NH3) is an essential chemical in modern society. It is currently produced in industry by the Haber-Bosch process using H2 and N2 as reactants in the presence of iron-based catalysts at high-temperature (400–600 oC) and extremely highpressure (20–40 MPa) conditions. However, its efficiency is limited to 10% to 15%. At the same time, a large amount of energy is consumed, and CO2 emission is inevitably. The development of a sustainable, clean, and environmentally friendly energy system represents a key strategy to address energy crisis and environmental pollution, ultimately aiming to achieve carbon neutrality. …


Effects Of Polymer-Nanoparticle Interactions On The Dynamics Of Attractive Polyhedral Oligomeric Silsesquioxane Nanocomposites, Walter W. Young 2024 University of Massachusetts Amherst

Effects Of Polymer-Nanoparticle Interactions On The Dynamics Of Attractive Polyhedral Oligomeric Silsesquioxane Nanocomposites, Walter W. Young

Doctoral Dissertations

Polyhedral oligomeric silsesquioxane (POSS) had long been recognized as a critical building block for inorganic-organic hybrid materials with unique and desirable properties and performance. Through synthesis and characterization of polymer/POSS nanocomposites, direct insights into the significant effects of the polymer/POSS interactions on the resulting material properties are obtained. Random copolymers of a hydrogen-bond accepting monomer and a non-interacting monomer are synthesized and loaded with a model amine-functionalized hydrogen bond donating POSS molecule via solution casting, to create a material with well-controlled dynamical heterogeneity. The increase in the glass transition temperature (Tg) of these materials is found to strongly depend on …


Digital Commons powered by bepress