Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

15,057 Full-Text Articles 27,005 Authors 4,867,221 Downloads 179 Institutions

All Articles in Materials Science and Engineering

Faceted Search

15,057 full-text articles. Page 1 of 516.

Tribocorrosion And Metal Release From Austenitic Stainless Steels 304 And 201 In Simulated Cassava Food Contact, Robert Addai, Temitope E. Olowoyo, Thalia E. Standish, Jeffrey Daniel Henderson, Ubong Eduok, Yolanda Hedberg 2024 Western University

Tribocorrosion And Metal Release From Austenitic Stainless Steels 304 And 201 In Simulated Cassava Food Contact, Robert Addai, Temitope E. Olowoyo, Thalia E. Standish, Jeffrey Daniel Henderson, Ubong Eduok, Yolanda Hedberg

Chemistry Publications

Cassava is the third most significant calorie source in the tropics. Its processing has changed from traditional methods to stainless steel processing machines. This study investigated the influence of cassava on metal release from two common stainless steels, ASTM 304 and 201, with and without friction, and on tribocorrosion (multianalytically) of 304. Cassava was relatively corrosive and hindered repassivation of the surface oxide of stainless steel, but it also acted as a lubricant against mechanical friction. The combined action of friction and cassava caused a significant increase in iron, chromium, nickel, and manganese release from the stainless steels (30–35- fold …


Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb 2024 American University in Cairo

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


Atom Probe Tomography Of Segregation At Grain Boundaries And Gas Bubbles In Neutron Irradiated U-10 Wt% Mo Fuel, Maalavan Arivu, Andrew Hoffman, Mukesh Bachhav, Assel Aitkaliyeva, Yaqiao Wu, Brandon Miller, Dennis Keiser, Jian Gan, Haiming Wen 2024 Missouri University of Science and Technology

Atom Probe Tomography Of Segregation At Grain Boundaries And Gas Bubbles In Neutron Irradiated U-10 Wt% Mo Fuel, Maalavan Arivu, Andrew Hoffman, Mukesh Bachhav, Assel Aitkaliyeva, Yaqiao Wu, Brandon Miller, Dennis Keiser, Jian Gan, Haiming Wen

Materials Science and Engineering Faculty Research & Creative Works

During Neutron Irradiation to Fission Densities > 5.2 X 1021 Fiss/cm3, Xe Agglomerates Forming Gas Bubbles of Varying Size within the U-Mo Fuel Matrix. Herein, Segregation of Fission Products to Xe Bubbles and Grain Boundaries (GB) Were Studied using Atom Probe Tomography (APT). Segregation Behavior Was Found to Vary among GBs, Small Bubbles (<10 >Nm), and Larger Bubbles (>10 Nm). Solid Fission Products Were Enriched at GBs and Larger Bubbles, But Not at Small Bubbles. a Denuded Zone Was Identified Adjacent to a > 10 Nm Xe Gas Bubble and a GB.


Comparison Of Pm-Hip To Forged Sa508 Pressure Vessel Steel Under High-Dose Neutron Irradiation, Wen Jiang, Yangyang Zhao, Yu Lu, Yaqiao Wu, David Frazer, Donna P. Guillen, David W. Gandy, Janelle P. Wharry 2024 Purdue University

Comparison Of Pm-Hip To Forged Sa508 Pressure Vessel Steel Under High-Dose Neutron Irradiation, Wen Jiang, Yangyang Zhao, Yu Lu, Yaqiao Wu, David Frazer, Donna P. Guillen, David W. Gandy, Janelle P. Wharry

Materials Science and Engineering Faculty Publications and Presentations

Powder metallurgy with hot isostatic pressing (PM-HIP) is an advanced manufacturing process that is envisioned to replace forging for heavy nuclear components, including the reactor pressure vessel (RPV). But PM-HIP products must at least demonstrate comparable irradiation tolerance than forgings in order to be qualified for nuclear applications. The objective of this study is to directly compare PM-HIP to forged SA508 Grade 3 Class 1 low-alloy RPV steel at two neutron irradiation conditions: ∼0.5–1.0 displacements per atom (dpa) at ∼270 °C and ∼370 °C. PM-HIP SA508 experiences greater irradiation hardening and embrittlement (total elongation) than forged SA508. However, uniform elongation …


Rheological Properties And 3d Printing Behavior Of Pcl And Dmso2 Composites For Bio-Scaffold, Jae-Won Jang, Kyung-Eun Min, Cheolhee Kim, Chien Wern, Sung Yi 2024 Portland State University

Rheological Properties And 3d Printing Behavior Of Pcl And Dmso2 Composites For Bio-Scaffold, Jae-Won Jang, Kyung-Eun Min, Cheolhee Kim, Chien Wern, Sung Yi

Mechanical and Materials Engineering Faculty Publications and Presentations

The significance of rheology in the context of bio three-dimensional (3D) printing lies in its impact on the printing behavior, which shapes material flow and the layer-by-layer stacking process. The objective of this study is to evaluate the rheological and printing behaviors of polycaprolactone (PCL) and dimethyl sulfone (DMSO2) composites. The rheological properties were examined using a rotational rheometer, employing a frequency sweep test. Simultaneously, the printing behavior was investigated using a material extrusion 3D printer, encompassing varying printing temperatures and pressures. Across the temperature range of 120–140 °C, both PCL and PCL/DMSO2 composites demonstrated liquid-like behavior, …


Artificial Neural Network-Based Modelling For Yield Strength Prediction Of Austenitic Stainless-Steel Welds, Sukil Park, Cheolhee Kim, Namhyun Kang 2024 Portland State University

Artificial Neural Network-Based Modelling For Yield Strength Prediction Of Austenitic Stainless-Steel Welds, Sukil Park, Cheolhee Kim, Namhyun Kang

Mechanical and Materials Engineering Faculty Publications and Presentations

This study aimed to develop an artificial neural network (ANN) model for predicting the yield strength of a weld metal composed of austenitic stainless steel and compare its performance with that of conventional multiple regression and machine learning models. The input parameters included the chemical composition of the nine effective elements (C, Si, Mn, P, S, Ni, Cr, Mo, and Cu) and the heat input per unit length. The ANN model (comprising five nodes in one hidden layer), which was constructed and trained using 60 data points, yielded an R2 value of 0.94 and a mean average percent error …


A Computational Investigation Of Wood Selection For Acoustic Guitar, Jonah Osterhus 2024 Liberty University

A Computational Investigation Of Wood Selection For Acoustic Guitar, Jonah Osterhus

Senior Honors Theses

The acoustic guitar is a stringed instrument, often made of wood, that transduces vibrational energy of steel strings into coupled vibrations of the wood and acoustic pressure waves in the air. Variations in wood selection and instrument geometry have been shown to affect the timbre of the acoustic guitar. Computational methods were utilized to investigate the impact of material properties on acoustic performance. Sitka spruce was deemed the most suitable wood for guitar soundboards due to its acoustic characteristics, strength, and uniform aesthetic. Mahogany was deemed to be the best wood for the back and sides of the guitar body …


Influence Of Al2o3 Passivation Layer Thickness On The Thermal Stability And Quality Of Mocvd-Grown Gan On Si, S M Atiqur Rahman, Manika Tun Nafisa, Zhe Chuan Feng, Benjamin Klein, Ian T. Ferguson 2024 Kennesaw State University

Influence Of Al2o3 Passivation Layer Thickness On The Thermal Stability And Quality Of Mocvd-Grown Gan On Si, S M Atiqur Rahman, Manika Tun Nafisa, Zhe Chuan Feng, Benjamin Klein, Ian T. Ferguson

Symposium of Student Scholars

This research delves into the significant impact of varying thicknesses of the Al2O3 passivation layer on the thermal stability and crystalline quality of GaN on Si structures, an essential aspect for the next generation of high-temperature electronic and optoelectronic devices. By adopting metal-organic chemical vapor deposition (MOCVD) for the growth process, we analyzed structures with different Al2O3 passivation layer thicknesses: none, 2 nm, 10 nm, and 20 nm, each built upon the GaN layer. Through Raman spectroscopy, we meticulously assessed the changes in the E2 (High) phonon mode's peak position and full width …


Analysis Of The Effect Of Different Surface Preparation Methods On Corrosion Resistance And Adhesion Strength Of Astm A36 Steel Substrate With Surface Tolerant Epoxy Paint As Coating Material, Irwan Wijaya Santoso, Daffa Aqila, Rini Riastuti, Rizal Tresna Ramadhani 2024 Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Depok, 16424, Indonesia

Analysis Of The Effect Of Different Surface Preparation Methods On Corrosion Resistance And Adhesion Strength Of Astm A36 Steel Substrate With Surface Tolerant Epoxy Paint As Coating Material, Irwan Wijaya Santoso, Daffa Aqila, Rini Riastuti, Rizal Tresna Ramadhani

Journal of Materials Exploration and Findings

In the industrial world, to extend the service life of materials, protection methods are carried out to slow down the material's corrosion rate. The protection method that is often used is the coating method. The coating method is a protection method by coating the substrate material using a coating material to prevent contact between the substrate material and the environment. In this research, the substrate material used is ASTM A36 steel and the coating material used is Surface Tolerant Epoxy paint. The independent variable used in this study lies in the surface preparation method which consists of: solvent cleaning, hand …


Study On Human Integrity Management System Maturity Level For Supporting Asset Integrity And Process Safety Implementation, Anggiat M. Sihotang, Dedi Priadi, Datu Rizal Asral 2024 Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Depok, West Java, 16424, Indonesia

Study On Human Integrity Management System Maturity Level For Supporting Asset Integrity And Process Safety Implementation, Anggiat M. Sihotang, Dedi Priadi, Datu Rizal Asral

Journal of Materials Exploration and Findings

The human factors (HF) are recognized as one of critical process safety barriers involved in normal and abnormal conditions in the oil and gas industry. In order to strengthen the HF roles as barriers we need to ensure that the actions generated are based on a valid risk assessment of the operation to be addressed by a relevant human factor analysis. Organizations within the oil and gas process have made much progress in understanding and implementing HF improvement programs. However, organizations are not always clear about what are their current situations in managing HF, their priorities for HF to be …


Integration Of The Ashby Technique And Pahl-Beitz Quantitative Ranking For Railway Axle Material Selection, Helya Chafshoh Nafisah, Jaka Fajar Fatriansyah, Siti Norasmah Surip 2024 Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Depok, West Java, 16424, Indonesia

Integration Of The Ashby Technique And Pahl-Beitz Quantitative Ranking For Railway Axle Material Selection, Helya Chafshoh Nafisah, Jaka Fajar Fatriansyah, Siti Norasmah Surip

Journal of Materials Exploration and Findings

Railway axle serves as a vital connection between the train's wheels and its body. However, cyclic loading and high speed can induce fatigue in railway axle, which potentially leads to damage human safety. Therefore, it is important to find materials that have good mechanical properties with the lowest weight and cost. In this paper, a comprehensive method using Ashby chart has been performed to select candidate materials of railway axle. The methods begin with analyzing function by determining the problem, objective function, and constraints. After that, the results obtained are ranked using Pahl and Beitz quantitative weighting method. The results …


Effects Of Ti Addition On The Characteristics Of Al-10zn-6mg-2si/Zro2 Composites Produced By Squeeze Casting, Qesha Diva Prameshvara, Pipin Indah Lestari, Bondan Tiara Sofyan 2024 Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia

Effects Of Ti Addition On The Characteristics Of Al-10zn-6mg-2si/Zro2 Composites Produced By Squeeze Casting, Qesha Diva Prameshvara, Pipin Indah Lestari, Bondan Tiara Sofyan

Journal of Materials Exploration and Findings

Metal matrix composite (MMC) with 7xxx aluminum matrix is potential for ballistic applications due to the combination of strength, toughness, and light weight. Previous study successfully produced aluminum-based composites with SiC particles which were able to stop type III bullet, however cracks remained on back of the plate. Therefore, in this research, SiC was replaced by zirconia (ZrO2) due to its high fracture toughness. Ti-B grain refiner was added to further improve toughness through grain boundary strengthening mechanism. This research developed 5 vol.% ZrO2 strengthened Al-10Zn-6Mg-2Si composite with addition of Al-5Ti-1B grain refiner produced through squeeze casting …


Development Of 485 Mpa Class High Strength Low Alloy Steel For Power Plant Infrastructures, Agung Baskoro, Rini Riastuti 2024 Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Depok, West Java, 16424, Indonesia

Development Of 485 Mpa Class High Strength Low Alloy Steel For Power Plant Infrastructures, Agung Baskoro, Rini Riastuti

Journal of Materials Exploration and Findings

Currently, Indonesia is progressing to build 35,000 MW of power plants, which will increase the demand for materials, especially steel. One of these power plants is fossil fuel-based, which generates not only electricity but also flue gas containing sulfur that may cause corrosion to power plant infrastructure such as chimney or boiler areas. In addition, apart from being resistant to corrosion in sulfuric and hydrochloric acid conditions, the steel used in power plant infrastructure must also have good strength, toughness, and weldability. Therefore, the present paper describes about steel development for power plant applications that has not only corrosion resistance …


Characterization Of Chopped Carbon Fiber Reinforced Composites Produced Using Fused Deposition Modeling, Jonathon Tran, Rachel Shubella 2024 Portland State University

Characterization Of Chopped Carbon Fiber Reinforced Composites Produced Using Fused Deposition Modeling, Jonathon Tran, Rachel Shubella

Student Research Symposium

Fused deposition modeling (FDM) is an additive manufacturing (AM) process which can create parts with complex geometries in their final shape without need for additional specialized tools or devices. The FDM process builds parts by adding material layer by layer only where it is needed, saving energy, costs, production time for complex parts, and minimizing waste. Fiber reinforcement can significantly enhance the mechanical properties of a polymer material and depends significantly on the fiber length distribution and fiber orientation distribution of the final part. In this research, we investigated the various infill patterns of FDM printed Markforged onyx which is …


Reducing Switching Noise And Losses In Two-Stage Electric Power Converters, Abhijeet Prem 2024 Portland State University

Reducing Switching Noise And Losses In Two-Stage Electric Power Converters, Abhijeet Prem

Student Research Symposium

Advancements in semiconductor devices are enabling the design of better electrical power converter systems. Wide Bandgap (WBG) switching devices from Silicon Carbide and Gallium Nitride can operate at high temperatures, voltages, and frequencies with faster turn-on/off periods, improving converter performance over silicon devices. However, WBG technology is still new, and the rapid switching transitions of these devices lead to issues such as voltage overshoots, ringing, and electromagnetic interference, which need to be addressed for widespread adoption. This work introduces a new control method for reshaping the switching voltages, which overcomes the disadvantages of fast transition time without increasing the system's …


Quality Assurance And Quality Control For Reinforced Concrete Inspections, Calvin O. Walters Jr. 2024 CUNY New York City College of Technology

Quality Assurance And Quality Control For Reinforced Concrete Inspections, Calvin O. Walters Jr.

Publications and Research

Ensuring the safety and longevity of structures is paramount in concrete construction projects. Cases like the Big Dig ceiling collapse, which occurred on July 10, 2006, when a concrete ceiling panel measuring 20' x 40' and debris weighing 26 short tons (52,000 lb) fell within Boston's Fort Point Channel Tunnel, underscore this importance (Wald, M. L., 2007). Quality Assurance (QA) and Quality Control (QC) are crucial in mitigating such risks. QA ensures that materials and methods meet predetermined performance, design, and reliability standards specified in contracts and customer arrangements. On the other hand, QC is a strategic process businesses use …


Fabrication Of Two-Dimensional Material-Based Nano-Capacitors Using Bismuth Selenite (Bi2seo5) To Study Its Dielectric Properties, Major KC 2024 Washington University in St. Louis

Fabrication Of Two-Dimensional Material-Based Nano-Capacitors Using Bismuth Selenite (Bi2seo5) To Study Its Dielectric Properties, Major Kc

McKelvey School of Engineering Theses & Dissertations

In recent years, the demand for high-performance micro and nanodevices has surged, necessitating the exploration of novel dielectric materials to replace conventional silicon dioxide. Following the continuation of the Moorse law, as device dimensions reduce to nanoscale levels, the properties of silicon dioxide can degrade, leading to issues such as increased leakage current and reduced gate control. Materials with superior electrical properties, such as higher dielectric constant, lower leakage current, and better thermal stability allowing for the development of faster, more efficient, and more reliable devices are in higher demand than ever. Two-dimensional layered semiconductor nanomaterials represented by compounds such …


Effects Of Magnetite Particle Morphology On Adsorption Of Copper Ions From Aqueous Solutions, Alisa Hashley 2024 Montana Technological University

Effects Of Magnetite Particle Morphology On Adsorption Of Copper Ions From Aqueous Solutions, Alisa Hashley

Graduate Theses & Non-Theses

Adsorptive processes can be used for metal contaminant removal. This work addresses magnetite, a magnetic iron oxide, as the adsorbent for use in an adsorptive removal system, known as the continuous flow material recovery system (CFMR), developed by Leitzke et al. [1]. Though the system is effective in removing contaminants from aqueous solution, efforts to further improve efficiency are being made. One way to improve the efficiency of the CFMR is to analyze the magnetite particles being used and investigate how the particle properties effect adsorption. The author’s research is presented and discussed here to describe the effects magnetite particle …


An Overview Of How To Measure The Kinetic Properties Of An Anode Material For The Chlorine Evolution Reaction, Cameron Vann 2024 Brigham Young University

An Overview Of How To Measure The Kinetic Properties Of An Anode Material For The Chlorine Evolution Reaction, Cameron Vann

Reviews, Analyses, and Instructional Studies in Electrochemistry (RAISE)

The process of generating chlorine gas using electrolysis in aqueous systems is well established. However, a new process requires chlorine to be generated at high temperatures using molten salt. This harsh environment requires a new study of anode materials for the chlorine evolution reaction. Anode materials can be compared by their kinetic parameters, the transfer coefficient α and the exchange current i0. The basic theory of these properties as they relate to the chlorine evolution reaction has been detailed and an analysis method for finding these effective parameters has been shown and demonstrated.


Review Of Cyclic Voltammetry Measurements For Uranium In Flinak Molten Salt, Jackson Ivory 2024 Brigham Young University

Review Of Cyclic Voltammetry Measurements For Uranium In Flinak Molten Salt, Jackson Ivory

Reviews, Analyses, and Instructional Studies in Electrochemistry (RAISE)

The electrochemical behavior of uranium FLiNaK molten salts is explored, focusing on cyclic voltammetry (CV) as a powerful tool for redox characterization and diffusion studies. Through a comprehensive review of recent research, the study highlights the significance of CV in understanding electrode kinetics, material compatibility, and process optimization in molten salt environments. The findings underscore the potential of FLiNaK molten salt reactors in advancing nuclear energy technologies, fuel processing, and waste management strategies. Collaborative interdisciplinary efforts are emphasized to address challenges and accelerate innovation in electrochemical methods for nuclear applications.


Digital Commons powered by bepress