Open Access. Powered by Scholars. Published by Universities.®

Molecular, Cellular, and Tissue Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

619 Full-Text Articles 1,461 Authors 172,788 Downloads 70 Institutions

All Articles in Molecular, Cellular, and Tissue Engineering

Faceted Search

619 full-text articles. Page 3 of 28.

Engineering The Development Of Neuromuscular Circuitry On-Chip, Inès Khiyara 2022 University of Maine

Engineering The Development Of Neuromuscular Circuitry On-Chip, Inès Khiyara

Electronic Theses and Dissertations

Neuromuscular development happens in a complex interconnected network of biochemical pathways. This complicated embryonic development follows a strong, functional, and precise neuromuscular network that has interested both scientists and engineers who seek to better understand neuromuscular diseases. These disorders can be inherited or acquired, and their severity and mortality can vary. Researchers first studied the neuromuscular network from an organismal perspective, and more recently from an embryological, cellular, molecular, biochemical, and genetic perspective. From these studies, the fundamental principles of motor neuron pathfinding to muscles are widely understood, but the molecular drivers of specific nerve-muscle pairing remain unknown. Although in …


Development Of A Crosslinked Osteochondral Xenograft And A Collagen Stabilizing Intra-Articular Injection To Remediate Cartilage Focal Lesions To Prevent Osteoarthritis, Mark Lewis Mosher 2022 Mississippi State University

Development Of A Crosslinked Osteochondral Xenograft And A Collagen Stabilizing Intra-Articular Injection To Remediate Cartilage Focal Lesions To Prevent Osteoarthritis, Mark Lewis Mosher

Theses and Dissertations

Osteoarthritis is one of the most common causes of disability in adults in America. It is a progressive and degenerative disease where the articular cartilage is broken down and lost from the surfaces of bones causing chronic pain and swelling in the joints, and currently has no cure. The most commonly osteoarthritis starts from a focal lesion on the cartilage surface, which will expand on the surface and downwards through the thickness of the tissue. The current gold standard for correcting cartilage focal lesions is the osteochondral autograft/allograft transplantation (OAT), which replaces the defect with a fresh osteochondral graft. The …


Investigating Spatial Heterogeneity In Myocardial Wound Environments To Improve Therapy, Michael Potter 2022 Clemson University

Investigating Spatial Heterogeneity In Myocardial Wound Environments To Improve Therapy, Michael Potter

All Dissertations

Heart failure is a broad pathology manifestation categorized by an inability of the heart to successfully pump blood throughout the vast vessel network of the body. Within the United States, heart failure is projected to increase by approximately 46% from 2012 to 2030. Modalities of heart failure are generally related to wall mechanics that are impacted following myocardial infarction events. Interplay exists between the wall mechanics, responding cell populations, and the spatial heterogeneities in the resultant scar. This interplay directs the myocardium towards heart failure modalities governed by overly stiff or compliant states. It is essential to elucidate details underlying …


In Vitro Bioreactor For Mechanical Control And Characterization Of Tissue Constructs, Samuel Coeyman 2022 Clemson University

In Vitro Bioreactor For Mechanical Control And Characterization Of Tissue Constructs, Samuel Coeyman

All Dissertations

Heart failure (HF) currently affects over 6 million Americans, 50% of whom die within 5 years of their initial diagnosis. A major contributor to the onset of HF is cardiac fibrosis in the myocardium, which arises when fibroblasts (FBs) are activated in response to heightened mechanical stress from overload conditions like hypertension. Activated FBs remodel the extracellular matrix (ECM) and secrete ECM proteins including collagen. FB remodeling has been studied in the past by applying forces and/or deformations to three-dimensional, cell-seeded gels and tissue constructs in vitro. Unfortunately, previous stretching platforms have traditionally not enabled mechanical property assessment to be …


Development Of A Tissue Engineered Cardiac Patch, Howard Herbert 2022 Clemson University

Development Of A Tissue Engineered Cardiac Patch, Howard Herbert

All Dissertations

Cardiovascular Disease(CVD) is the leading cause of mortality in the developed world. CVD is most commonly manifested as atherosclerosis of the coronary arteries leading to Myocardial Infarction(MI). After MI, fibrosis of the ventricular wall leads to heart failure(HF), a pandemic affecting 26 million people globally. While therapies are continuously developed to combat HF, the treatment of choice, whole heart transplant, is limited by the availability of donor hearts. It is clear that there is a need to develop a long-term solution to combat HF and its enormous economic burden. Tissue Engineering and Regenerative Medicine holds promise as a possible solution …


Enhancing Human Schwann Cells Reparative Behavior Using Heparin/Collagen Layer-By-Layer Coatings, Luis Carlos Pinzon-Herrera 2022 University of Arkansas, Fayetteville

Enhancing Human Schwann Cells Reparative Behavior Using Heparin/Collagen Layer-By-Layer Coatings, Luis Carlos Pinzon-Herrera

Graduate Theses and Dissertations

When a peripheral nerve injury (PNI) occurs, the gold standard for tissue regeneration is the use of autografts. However, due to the secondary effects produced by multiple surgeries involved in the removal and implantation of autografts for very small lesions, it is possible to replace them with the use of Nerve Guide Conduits (NGCs). However, NGCs are limited to short lesions (less than 1 cm). This limitation is caused by the absence of compounds in the extracellular matrix (ECM) that autografts can provide. Since much of the regenerative process takes place on the NGC surface, our work aims to modify …


Evaluation Of Cellulose Nanocrystal Inks And Their Structural Characteristics For 3d Bioprinting Of Customized Scaffolds, Patrick William Kuczwara 2022 University of Arkansas, Fayetteville

Evaluation Of Cellulose Nanocrystal Inks And Their Structural Characteristics For 3d Bioprinting Of Customized Scaffolds, Patrick William Kuczwara

Graduate Theses and Dissertations

3D bioprinting of biological scaffolds requires control of the physicochemical properties of each unique structures. A promising material for control of properties is hydrogels, which can help create biomimetic scaffolds with controlled spatial arrangement of materials by integrating biological materials directly into layers during the bioprinting process. Nanocellulose offers a unique combination of properties including mechanical, biomimetic, and biocompatibility. These properties offer flexibility over the types, shapes, and applications of their printed hydrogel scaffolds, (i.e., tissue, drug, encapsulation). However, 3D bioprinting of nanocellulose-based hydrogels requires high loading percentages (i.e., >10 wt%) or chemical crosslinkers (i.e., bis(acyl)phosphane oxides (BAPO)). High solid …


Establishing The Efficacy Of Non-Cellular Components Of Adipose-Derived Stromal Vascular Fraction In Promoting Angiogenesis., Daniel Benson 2022 University of Louisville

Establishing The Efficacy Of Non-Cellular Components Of Adipose-Derived Stromal Vascular Fraction In Promoting Angiogenesis., Daniel Benson

Electronic Theses and Dissertations

Microvascular disease is hallmarked by pathophysiological conditions such as endothelial senescence, intimal thickening which impairs vasodilation, and regression of the capillary beds causing tissue ischemia in the myocardium or in peripheral vascular networks. Adipose-derived stromal vascular fraction (SVF) has previously demonstrated the ability to revascularize tissue. Increasing evidence shows that regenerative cells elicit their therapeutic benefit by paracrine mechanisms, leaving open extracellular vesicles (EVs) as a potential crux of the cell therapy paradigm. To test this idea, three types of gelatin methacrylate hydrogels were employed: SVF gels, EV gels derived from SVF, and blank control gels, which were used in-vitro …


Engineer And Test A Biodegradable Microneedle Patch To Deliver Meloxicam For Managing Pain In Cattle, Katherine Alejandra Miranda Munoz 2022 University of Arkansas, Fayetteville

Engineer And Test A Biodegradable Microneedle Patch To Deliver Meloxicam For Managing Pain In Cattle, Katherine Alejandra Miranda Munoz

Graduate Theses and Dissertations

Microneedle patches are a promising source for transdermal diffusion of macromolecules and are designed to painlessly penetrate the skin. In this study, a biodegradable chitosan microneedle patch to deliver meloxicam for managing pain in cattle was tested. The potential of reuse of the polymeric solution to fabricate the patches, optimization of fabrication, morphological analysis of the microneedle patch and analysis of preservation of the chemical composition after sterilization were evaluated. In-vitro analysis consisted of studying in-vitro penetration mechanical properties, compression testing analysis of microneedle patch, and in-vitro drug release analysis. In-vivo studies were performed to analyze the dissolution capability of …


Hypoxic Incubation Chamber, Simone Lisette Helfrich, Makenzie Nicole Jones 2022 California Polytechnic State University, San Luis Obispo

Hypoxic Incubation Chamber, Simone Lisette Helfrich, Makenzie Nicole Jones

Biomedical Engineering: Graduate Reports and Projects

This paper describes the design, manufacturing, and testing of a novel controllable hypoxic incubator with fully functional oxygen gas control and temperature control in a humid environment. On the current market, a majority of the few hypoxic incubators use pre-mixed gas that does not offer precise control over gas concentration. The objective for this project was to create a chamber that allows the user to set the O2 concentration to varying set points of % O2 while maintaining the chamber at a constant body temperature, CO2 level, humidity, and sterility. To start the project, multiple concepts were developed for the …


Hypoxic Incubation Chamber, Simone Lisette Helfrich, Makenzie Nicole Jones 2022 California Polytechnic State University, San Luis Obispo

Hypoxic Incubation Chamber, Simone Lisette Helfrich, Makenzie Nicole Jones

Master's Theses

This paper describes the design, manufacturing, and testing of a novel controllable hypoxic incubator with fully functional oxygen gas control and temperature control in a humid environment. On the current market, a majority of the few hypoxic incubators use pre-mixed gas that does not offer precise control over gas concentration. The objective for this project was to create a chamber that allows the user to set the O2 concentration to varying set points of % O2 while maintaining the chamber at a constant body temperature, CO2 level, humidity, and sterility. To start the project, multiple concepts were developed for the …


Conducting Polypyrrole Hydrogel Biomaterials For Drug Delivery And Cartilage Tissue Regeneration, Iryna Liubchak 2022 The University of Western Ontario

Conducting Polypyrrole Hydrogel Biomaterials For Drug Delivery And Cartilage Tissue Regeneration, Iryna Liubchak

Electronic Thesis and Dissertation Repository

Articular cartilage tissue has limited capacity for self-regeneration leading to challenges in the treatment of joint injuries and diseases such as osteoarthritis. The tissue engineering approach combines biomaterials, cells and bioactive molecules to provide a long-term and stable cartilage repair. In the following work, electroactive polymer polypyrrole~(PPy) was incorporated into the synthetic hydrogel to enhance the mechanical properties of the material for cartilage applications. PPy was loaded with drug compound and the \emph{on demand} drug release was demonstrated. The composite PPy hydrogel was 3D printed using stereolithography to create a porous tissue engineering scaffold. Biocompatibility and cell adhesion to the …


Cellular Bioenergetics: Experimental Evidence For Alcohol-Induced Adaptations, Liz Simon, Patricia E. Molina 2022 LSU Health Sciences Center - New Orleans

Cellular Bioenergetics: Experimental Evidence For Alcohol-Induced Adaptations, Liz Simon, Patricia E. Molina

School of Medicine Faculty Publications

At-risk alcohol use is associated with multisystemic effects and end-organ injury, and significantly contributes to global health burden. Several alcohol-mediated mechanisms have been identified, with bioenergetic maladaptation gaining credence as an underlying pathophysiological mechanism contributing to cellular injury. This evidence-based review focuses on the current knowledge of alcohol-induced bioenergetic adaptations in metabolically active tissues: liver, cardiac and skeletal muscle, pancreas, and brain. Alcohol metabolism itself significantly interferes with bioenergetic pathways in tissues, particularly the liver. Alcohol decreases states of respiration in the electron transport chain, and activity and expression of respiratory complexes, with a net effect to decrease ATP content. …


Labeling Melanoma Cells With Black Microspheres For Improved Sensitivity In Detection Via Photoacoustic Flow Cytometry, Tori Kocsis 2022 Duquesne University

Labeling Melanoma Cells With Black Microspheres For Improved Sensitivity In Detection Via Photoacoustic Flow Cytometry, Tori Kocsis

Electronic Theses and Dissertations

Melanoma is an aggressive form of skin cancer known for developing into metastatic disease. Current clinical diagnostics, including medical imaging and tissue biopsy, provide a poor prognosis since the cancer is in the late stages of disease progression. In recent years, photoacoustic flow cytometry has allowed for the detection of circulating melanoma cells within patient blood samples in vitro. Although this method exploits the naturally-produced melanin within the cells, it has only successfully detected highly-pigmented melanoma cell lines. Since various forms of melanoma exist, each with varying melanin concentrations, this research aims to provide a novel method for detecting lightly-pigmented …


Mitral Valve Tissue Engineering - A Dynamic Model For Investigating The Mechanism Of Valvular Pathology, Collin Owens 2022 Clemson University

Mitral Valve Tissue Engineering - A Dynamic Model For Investigating The Mechanism Of Valvular Pathology, Collin Owens

All Dissertations

Heart valve disease affects an average of 2.5% of the population in the United States. The mitral valve (MV) is the most complex of the heart’s four valves and is most associated with the disease by exhibiting altered extracellular matrix (ECM) which translates into stenosis or regurgitation. These diseases are typically degenerative in nature and can be accelerated by risk factors such as diabetes and hypertension. With diabetes and hypertension affecting 425 million and 1.39 billion people worldwide, further investigation into these risk factors is warranted. This study aims to develop and test an in vitro model of MV disease. …


A 3d Tissue Engineering Model To Study Mitral Valve Annulus Calcification Under Diabetic Conditions, Erin James 2022 Clemson University

A 3d Tissue Engineering Model To Study Mitral Valve Annulus Calcification Under Diabetic Conditions, Erin James

All Theses

The most complex heart valve is the mitral valve (MV). Many pathologies can affect the MV, including stenosis, regurgitation, prolapse, and mitral annulus calcification (MAC). MAC is chronic degeneration of the annulus, which is the fibrous, saddle-shaped “ring” that can contract and relax with the myocardium. The prevalence of MAC is around 15% but increases in patients with other cardiovascular diseases and risk factors. It is also thought to increase in patients with type 2 diabetes, but MAC has not been properly characterized within this population because of confounding factors such as cardiac disease and kidney disease. The goal of …


Optimizing Crispr/Cas9-Mediated Knockdown Of Angptl3 In Liver Cell Lines And Mouse Hepatocytes, Meredith Reeves 2022 Clemson University

Optimizing Crispr/Cas9-Mediated Knockdown Of Angptl3 In Liver Cell Lines And Mouse Hepatocytes, Meredith Reeves

All Theses

Familial hypercholesterolemia (FH) is a genetic condition characterized by elevated levels of low-density lipoprotein cholesterol (LDL-C) that leads to an increased risk of developing cardiac disease early in life (Shah et al., 2020). Current treatments such as statins and PCSK9 inhibitors have helped lower LDL-C levels, however they require repeated administration every 4-6 weeks to remain effective (Raal et al., 2018). Angiopoietin-like 3 (ANGPTL3) is an inhibitor of plasma lipid metabolism that has become a promising molecular target for the treatment of FH. Individuals with non-functional copies of ANGPTL3 demonstrate low levels of plasma LDL-C and triglycerides, indicating a protective …


Engineering Of Ideal Systems For The Study And Direction Of Stem Cell Asymmetrical Division And Fate Determination, Martina Zamponi 2022 Old Dominion University

Engineering Of Ideal Systems For The Study And Direction Of Stem Cell Asymmetrical Division And Fate Determination, Martina Zamponi

Biomedical Engineering Theses & Dissertations

The cellular microenvironment varies significantly across tissues, and it is constituted by both resident cells and the macromolecules they are exposed to. Cues that the cells receive from the microenvironment, as well as the signaling transmitted to it, affect their physiology and behavior. This notion is valid in the context of stem cells, which are susceptible to biochemical and biomechanical signaling exchanged with the microenvironment, and which plays a fundamental role in establishing fate determination and cell differentiation events. The definition of the molecular mechanisms that drive stem cell asymmetrical division, and how these are modulated by microenvironmental signaling, is …


Functional Requirements For A Samd14-Capping Protein Complex In Stress Erythropoiesis, Suhita Ray, Linda Chee, Yichao Zhou, Meg A. Schaefer, Michael J. Naldrett, Sophie Alvarez, Nicholas T. Woods, Kyle J. Hewitt 2022 University of Nebraska Medical Center

Functional Requirements For A Samd14-Capping Protein Complex In Stress Erythropoiesis, Suhita Ray, Linda Chee, Yichao Zhou, Meg A. Schaefer, Michael J. Naldrett, Sophie Alvarez, Nicholas T. Woods, Kyle J. Hewitt

Nebraska Center for Biotechnology: Faculty and Staff Publications

Acute anemia induces rapid expansion of erythroid precursors and accelerated differentiation to replenish erythrocytes. Paracrine signals—involving cooperation between stem cell factor (SCF)/Kit signaling and other signaling inputs—are required for the increased erythroid precursor activity in anemia. Our prior work revealed that the sterile alpha motif (SAM) domain 14 (Samd14) gene increases the regenerative capacity of the erythroid system in a mouse genetic model and promotes stress-dependent Kit signaling. However, the mechanism underlying Samd14’s role in stress erythropoiesis is unknown. We identified a protein-protein interaction between Samd14 and the α- and β-heterodimers of the F-actin capping protein (CP) complex. Knockdown of …


Development Of In Vitro Bone Organoid Models For The Recapitulation Of Bone Complexity, Yongkuk Park 2022 University of Massachusetts Amherst

Development Of In Vitro Bone Organoid Models For The Recapitulation Of Bone Complexity, Yongkuk Park

Doctoral Dissertations

Osteoporosis is the most common skeletal disorder that thins and weakens the bones, yet the detailed mechanisms remain poorly understood and limited therapeutic options are available. This can be attributed to the lack of relevant experimental models that can recapitulate the bone complexity and bone remodeling. Mouse models have identified many critical genes and molecules regulating bone metabolism but are limited to studying detailed cellular and molecular processes due to anatomical inaccessibility and restricted ability to manipulate bone structure. Considerable efforts have been made to generate physiologically relevant models by using synthetic and biomaterial-based 3D scaffolds. However, there are no …


Digital Commons powered by bepress