Controlled Radiation Capsule For Precision And Rapid Cancer Treatment,
2023
Kennesaw State University
Controlled Radiation Capsule For Precision And Rapid Cancer Treatment, Hoseon Lee, Zsolt Kollar, Bailey R. White, Junia Nguyen, David Roque, Sowjanya Palagani
Symposium of Student Scholars
This research aims to transform cancer treatment through the optimization of brachytherapy, with a focus on reducing treatment duration, setup complexities, and financial burdens, all while emphasizing patient safety. Patients living at a distance from radiation clinics, particularly those undergoing extended Low Dose Radiation brachytherapy, often struggle with the formidable financial challenges associated with securing nearby accommodations. In response to these issues, the research introduces a radiation capsule designed to condense the conventional six-month treatment period to approximately just one week, thereby significantly reducing the duration of required accommodations. This capsule is especially relevant considering the construction cost of $40 …
A Novel Brain Computer Interface Design,
2023
Liberty University
A Novel Brain Computer Interface Design, Steven Vogan
Senior Honors Theses
A brain computer interface (BCI) is a system which connects neural signals to a computer system. They have been used for controlling systems including robotics, on-screen computer control such as mouse movement, typing, and synthesizing audio signals. Invasive, or implanted, systems are often long-term medical solutions, or used for research where very clear signal is required. Non-invasive systems usually rely on exterior signals gathered through a headset using one or more electrode sensors. These signals are composed of sums of neuron activation potentials from brain activity and can be used to determine particular aspects of brain function. All BCIs rely …
Control Of The Electroporation Efficiency Of Nanosecond Pulses By Swinging The Electric Field Vector Direction,
2023
Old Dominion University
Control Of The Electroporation Efficiency Of Nanosecond Pulses By Swinging The Electric Field Vector Direction, Vitalii Kim, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Ruben M. L. Colunga Biancatelli, Andrei G. Pakhomov
Bioelectrics Publications
Reversing the pulse polarity, i.e., changing the electric field direction by 180°, inhibits electroporation and electrostimulation by nanosecond electric pulses (nsEPs). This feature, known as “bipolar cancellation,” enables selective remote targeting with nsEPs and reduces the neuromuscular side effects of ablation therapies. We analyzed the biophysical mechanisms and measured how cancellation weakens and is replaced by facilitation when nsEPs are applied from different directions at angles from 0 to 180°. Monolayers of endothelial cells were electroporated by a train of five pulses (600 ns) or five paired pulses (600 + 600 ns) applied at 1 Hz or 833 kHz. Reversing …
The Effect Of Spinal Cord Stimulation And Video Games Training On Body-Machine Interface Control,
2023
Washington University in St. Louis
The Effect Of Spinal Cord Stimulation And Video Games Training On Body-Machine Interface Control, Jie Fei
McKelvey School of Engineering Theses & Dissertations
Damage to the spinal cord causes long-lasting loss of motor and sensory function, and currently, there is no ‘cure’ for paralysis. However, even people with severe spinal cord injuries (SCI) have some residual mobility. Studies have shown that transcutaneous electrical spinal cord stimulation (tSCS) combined with functional training targeting residual mobility can further improve the motor function of individuals with SCI. In this study, we present a technical framework that aims to enhance rehabilitation outcomes by targeting residual mobility through a motor training-based approach. Our technical framework centers around a non-invasive body-machine interface (BoMI) that relies on the use of …
Cerebral Blood Flow Measured By Diffuse Correlation Spectroscopy For Monitoring Depth Of Anesthesia In Piglets,
2023
Drexel University
Cerebral Blood Flow Measured By Diffuse Correlation Spectroscopy For Monitoring Depth Of Anesthesia In Piglets, Mert Deniz Polat, Kurtulus Izzetoglu, Randolph Sinahon, Meltem Izzetoglu, Shadi Malaeb
St. Chris Research Day
No abstract provided.
Preparing Non-Human Primates To Study Hand-Eye Coordination In Frontal Eye Fields (Fef) During Delayed Movement Task,
2023
Washington University in St. Louis
Preparing Non-Human Primates To Study Hand-Eye Coordination In Frontal Eye Fields (Fef) During Delayed Movement Task, Juliusz Cydzik
McKelvey School of Engineering Theses & Dissertations
ABSTRACT OF THE THESIS Preparing Non-Human Primates to Study Hand-Eye Coordination in Frontal Eye Fields (FEF) During Delayed Movement Task by Juliusz Cydzik Master of Science in Biomedical Engineering Washington University in St. Louis, 2023 Professor Lawrence Snyder, Chair Hand-eye coordination enables humans and non-human primates to use their hands and eyes to perform various tasks. We are interested in coordination at the systems level, where saccades and reaches are encoded. The parietal reach region (PRR), situated at the posterior end of the intraparietal sulcus (IPS) and overlapping portions of the medial intraparietal area (MIP) and V6a, is commonly attributed …
Pulsed Electric Field Ablation Of Esophageal Malignancies And Mitigating Damage To Smooth Muscle: An In Vitro Study,
2023
Old Dominion University
Pulsed Electric Field Ablation Of Esophageal Malignancies And Mitigating Damage To Smooth Muscle: An In Vitro Study, Emily Gudvangen, Uma Mangalanathan, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Andrei G. Pakhomov
Bioelectrics Publications
Cancer ablation therapies aim to be efficient while minimizing damage to healthy tissues. Nanosecond pulsed electric field (nsPEF) is a promising ablation modality because of its selectivity against certain cell types and reduced neuromuscular effects. We compared cell killing efficiency by PEF (100 pulses, 200 ns–10 µs duration, 10 Hz) in a panel of human esophageal cells (normal and pre-malignant epithelial and smooth muscle). Normal epithelial cells were less sensitive than the pre-malignant ones to unipolar PEF (15–20% higher LD50, p < 0.05). Smooth muscle cells (SMC) oriented randomly in the electric field were more sensitive, with 30–40% lower LD50 (p < 0.01). Trains of ten, 300-ns pulses at 10 kV/cm caused twofold weaker electroporative uptake of YO-PRO-1 dye in normal epithelial cells than in either pre-malignant cells or in SMC oriented perpendicularly to the field. Aligning SMC with the field reduced the dye uptake fourfold, along with a twofold reduction in Ca2+ transients. A 300-ns pulse induced a twofold smaller transmembrane potential in cells aligned with the field, making them …
Measurement Of Fluid Movement Throughout The Brain Via Multiple Magnetic Resonance Imaging Techniques During High-Definition Transcranial Direct Current Stimulation,
2023
CUNY City College
Measurement Of Fluid Movement Throughout The Brain Via Multiple Magnetic Resonance Imaging Techniques During High-Definition Transcranial Direct Current Stimulation, Jack W. Beaty Mr
Dissertations and Theses
Transcranial Direct Current Stimulation (tDCS) is a non-invasive method of neuromodulation with applications in neuroscience, clinical care, and biomedical engineering. tDCS has been well established as a safe method of applying low amplitude current between two or more electrodes to alter excitation thresholds and neuroplasticity. Recently, in-vitro and clinical studies have suggested that DC stimulation can induce a transient, polarity-specific, effect of increased water exchange across the blood-brain barrier (BBB). The electroosmotic effect, the proposed phenomenon driving water exchange, is a biophysical response of charged ions moving across an oppositely-charged surface, i.e., the tight junction, when subjected to an electric …
Reduced Metal Nanocatalysts For Selective Electrochemical Hydrogenation Of Biomass-Derived 5-(Hydroxymethyl)Furfural To 2, 5-Bis(Hydroxymethyl)Furan In Ambient Conditions,
2023
Elizabeth City State University
Reduced Metal Nanocatalysts For Selective Electrochemical Hydrogenation Of Biomass-Derived 5-(Hydroxymethyl)Furfural To 2, 5-Bis(Hydroxymethyl)Furan In Ambient Conditions, Baleeswaraiah Muchharla, Moumita Dikshit, Ujjwal Pokharel, Ravindranath Garimella, Adetayo Adedeji, Kapil Kumar, Wei Cao, Hani Elsayed-Ali, Kishor Kumar Sadasivuni, Naif Abdullah Al-Dhabi, Sandeep Kumar, Bijandra Kumar
Chemistry & Biochemistry Faculty Publications
Selective electrochemical hydrogenation (ECH) of biomass-derived unsaturated organic molecules has enormous potential for sustainable chemical production. However, an efficient catalyst is essential to perform an ECH reaction consisting of superior product selectivity and a higher conversion rate. Here, we examined the ECH performance of reduced metal nanostructures i.e., reduced Ag (rAg) and reduced copper (rCu) prepared via electrochemical or thermal oxidation and electrochemical reduction process, respectively. Surface morphological analysis suggests formation of nanocoral and entangled nanowire structure formation for rAg and rCu catalysts. rCu exhibits slight enhancement in ECH reaction performance in comparison to the pristine Cu. However, the rAg …
Editorial: Pulsed Electric Field Based Technologies For Oncology Applications,
2023
Old Dominion University
Editorial: Pulsed Electric Field Based Technologies For Oncology Applications, Siqi Guo, Gregor Sersa, Richard Heller
Bioelectrics Publications
No abstract provided.
Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep),
2023
Old Dominion University
Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova
Bioelectrics Publications
The study was aimed at identifying endogenous proteins which assist or impede the permeabilized state in the cell membrane disrupted by nsEP (20 or 40 pulses, 300 ns width, 7 kV/cm). We employed a LentiArray CRISPR library to generate knockouts (KOs) of 316 genes encoding for membrane proteins in U937 human monocytes stably expressing Cas9 nuclease. The extent of membrane permeabilization by nsEP was measured by the uptake of Yo-Pro-1 (YP) dye and compared to sham-exposed KOs and control cells transduced with a non-targeting (scrambled) gRNA. Only two KOs, for SCNN1A and CLCA1 genes, showed a statistically significant reduction in …
Ultra-Low Intensity Post-Pulse Affects Cellular Responses Caused By Nanosecond Pulsed Electric Fields,
2023
Old Dominion University
Ultra-Low Intensity Post-Pulse Affects Cellular Responses Caused By Nanosecond Pulsed Electric Fields, Kamal Asadipour, Carol Zhou, Vincent Yi, Stephen J. Beebe, Shu Xiao
Electrical & Computer Engineering Faculty Publications
High-intensity nanosecond pulse electric fields (nsPEF) can preferentially induce various effects, most notably regulated cell death and tumor elimination. These effects have almost exclusively been shown to be associated with nsPEF waveforms defined by pulse duration, rise time, amplitude (electric field), and pulse number. Other factors, such as low-intensity post-pulse waveform, have been completely overlooked. In this study, we show that post-pulse waveforms can alter the cell responses produced by the primary pulse waveform and can even elicit unique cellular responses, despite the primary pulse waveform being nearly identical. We employed two commonly used pulse generator designs, namely the Blumlein …
Evaluation Of Cold Atmospheric Plasma For The Decontamination Of Flexible Endoscopes,
2023
Old Dominion University
Evaluation Of Cold Atmospheric Plasma For The Decontamination Of Flexible Endoscopes, R. C. Hervé, Michael G. Kong, Sudhir Bhatt, Hai-Lan Chen, E. E. Comoy, J-P. Deslys, T. J. Secker, C. W. Keevil
Bioelectrics Publications
Background: Despite adherence to standard protocols, residues including live microorganisms may remain on the various surfaces of reprocessed flexible endoscopes. Prions are infectious proteins notoriously difficult to eliminate.
Aim: We tested the potential of cold atmospheric plasma (CAP) for the decontamination of flexible endoscope various surfaces, measuring total proteins and prion-residual infectivity as an indicator of efficacy.
Methods: New PTFE endoscope channels and metal test surfaces spiked with test soil or prion-infected tissues were treated using different CAP-generating prototypes. Surfaces were then examined for the presence of residues using very sensitive fluorescence epi-microscopy. Prion residual infectivity was determined using the …
An Acute Respiratory Distress Syndrome Drug Development Collaboration Stimulated By The Virginia Drug Discovery Consortium,
2023
University of Virginia
An Acute Respiratory Distress Syndrome Drug Development Collaboration Stimulated By The Virginia Drug Discovery Consortium, John S. Lazo, Ruben M.L. Colunga-Biancatelli, Pavel A. Solopov, John D. Catravas
Bioelectrics Publications
The genesis of most older medicinal agents has generally been empirical. During the past one and a half centuries, at least in the Western countries, discovering and developing drugs has been primarily the domain of pharmaceutical companies largely built upon concepts emerging from organic chemistry. Public sector funding for the discovery of new therapeutics has more recently stimulated local, national, and international groups to band together and focus on new human disease targets and novel treatment approaches. This Perspective describes one contemporary example of a newly formed collaboration that was simulated by a regional drug discovery consortium. University of Virginia, …
Extracellular Vesticles In Acute Respiratory Distress Syndrome: Understanding Protective And Harmful Signaling For The Development Of New Therapeutics,
2023
Eastern Virginia Medical School
Extracellular Vesticles In Acute Respiratory Distress Syndrome: Understanding Protective And Harmful Signaling For The Development Of New Therapeutics, Matthew Bavuso, Noel Miller, Joshua M. Sill, Anca Dobrian, Ruben M. L. Colunga Biancatelli
Bioelectrics Publications
Acute respiratory distress syndrome (ARDS) is a severe respiratory condition characterized by increased lung permeability, hyper-inflammatory state, and fluid leak into the alveolar spaces. ARDS is a heterogeneous disease, with multiple direct and indirect causes that result in a mortality of up to 40%. Due to the ongoing Covid-19 pandemic, its incidence has increased up to ten-fold. Extracellular vesicles (EVs) are small liposome-like particles that mediate intercellular communication and play a major role in ARDS pathophysiology. Indeed, they participate in endothelial barrier dysfunction and permeability, neutrophil, and macrophage activation, and also in the development of a hypercoagulable state. A more …
Emulating Future Neurotechnology Using Magic,
2022
McGill University
Emulating Future Neurotechnology Using Magic, Jay A. Olson, Mariève Cyr, Despina Z. Artenie, Thomas Strandberg, Lars Hall, Matthew L. Tompkins, Amir Raz, Petter Johansson
Psychology Faculty Articles and Research
Recent developments in neuroscience and artificial intelligence have allowed machines to decode mental processes with growing accuracy. Neuroethicists have speculated that perfecting these technologies may result in reactions ranging from an invasion of privacy to an increase in self-understanding. Yet, evaluating these predictions is difficult given that people are poor at forecasting their reactions. To address this, we developed a paradigm using elements of performance magic to emulate future neurotechnologies. We led 59 participants to believe that a (sham) neurotechnological machine could infer their preferences, detect their errors, and reveal their deep-seated attitudes. The machine gave participants randomly assigned positive …
The Influence Of Electrical Stimulation Pulse Frequency Of Macro-Sieve Electrode On Rat Sciatic Nerve Detection Threshold,
2022
Washington University in St. Louis
The Influence Of Electrical Stimulation Pulse Frequency Of Macro-Sieve Electrode On Rat Sciatic Nerve Detection Threshold, Jingyuan Zhang
McKelvey School of Engineering Theses & Dissertations
No abstract provided.
Modification Of The Tumor Microenvironment Enhances Anti-Pd-1 Immunotherapy In Metastatic Melanoma,
2022
University of South Florida
Modification Of The Tumor Microenvironment Enhances Anti-Pd-1 Immunotherapy In Metastatic Melanoma, Guilan Shi, Megan Scott, Cathryn G. Mangiamele, Richard Heller
Bioelectrics Publications
Resistance to checkpoint-blockade treatments is a challenge in the clinic. Both primary and acquired resistance have become major obstacles, greatly limiting the long-lasting effects and wide application of blockade therapy. Many patients with metastatic melanoma eventually require further therapy. The absence of T-cell infiltration to the tumor site is a well-accepted contributor limiting immune checkpoint inhibitor efficacy. In this study, we combined intratumoral injection of plasmid IL-12 with electrotransfer and anti-PD-1 in metastatic B16F10 melanoma tumor model to increase tumor-infiltrating lymphocytes and improve therapeutic efficacy. We showed that effective anti-tumor responses required a subset of tumor-infiltrating CD8+ and CD4 …
Frontiers In The Self-Assembly Of Charged Macromolecules,
2022
University of Massachusetts Amherst
Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian
Doctoral Dissertations
The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …
Optimization Of A Novel Barnes Maze Protocol For Assessing Antioxidant Treatment Of Traumatic Brain Injury,
2022
University of Nebraska-Lincoln
Optimization Of A Novel Barnes Maze Protocol For Assessing Antioxidant Treatment Of Traumatic Brain Injury, Connor C. Gee
Department of Biological Systems Engineering: Dissertations, Theses, and Student Research
Current preclinical research into traumatic brain injury focuses heavily upon cellular and molecular testing to determine the effects of injury and potential benefits of neuroprotective treatments. While this may be a useful method, some argue that an increased focus on behavioral testing could lead to better clinical translation as these assays assess the longer term, downstream effects from a brain injury. The most characterized behavioral tests used in traumatic brain injury research are the spatial learning and memory paradigms, Morris Water Maze and Barnes Maze. The Morris Water Maze is the most used of theses paradigms and relies on spatial …