Open Access. Powered by Scholars. Published by Universities.®

Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

26,201 Full-Text Articles 27,801 Authors 11,209,478 Downloads 316 Institutions

All Articles in Mathematics

Faceted Search

26,201 full-text articles. Page 2 of 903.

Why Bernstein Polynomials: Yet Another Explanation, Olga Kosheleva, Vladik Kreinovich 2024 The University of Texas at El Paso

Why Bernstein Polynomials: Yet Another Explanation, Olga Kosheleva, Vladik Kreinovich

Departmental Technical Reports (CS)

In many computational situations -- in particular, in computations under interval or fuzzy uncertainty -- it is convenient to approximate a function by a polynomial. Usually, a polynomial is represented by coefficients at its monomials. However, in many cases, it turns out more efficient to represent a general polynomial by using a different basis -- of so-called Bernstein polynomials. In this paper, we provide a new explanation for the computational efficiency of this basis.


Somewhat Surprisingly, (Subjective) Fuzzy Technique Can Help To Better Combine Measurement Results And Expert Estimates Into A Model With Guaranteed Accuracy: Digital Twins And Beyond, Niklas Winnewisser, Michael Beer, Olga Kosheleva, Vladik Kreinovich 2024 Leibniz University Hannover

Somewhat Surprisingly, (Subjective) Fuzzy Technique Can Help To Better Combine Measurement Results And Expert Estimates Into A Model With Guaranteed Accuracy: Digital Twins And Beyond, Niklas Winnewisser, Michael Beer, Olga Kosheleva, Vladik Kreinovich

Departmental Technical Reports (CS)

To understand how different factors and different control strategies will affect a system -- be it a plant, an airplane, etc. -- it is desirable to form an accurate digital model of this system. Such models are known as digital twins. To make a digital twin as accurate as possible, it is desirable to incorporate all available knowledge of the system into this model. In many cases, a significant part of this knowledge comes in terms of expert statements, statements that are often formulated by using imprecise ("fuzzy") words from natural language such as "small", "very possible", etc. To translate …


How To Gauge Inequality And Fairness: A Complete Description Of All Decomposable Versions Of Theil Index, Saeid Tizpaz-Niari, Olga Kosheleva, Vladik Kreinovich 2024 The University of Texas at El Paso

How To Gauge Inequality And Fairness: A Complete Description Of All Decomposable Versions Of Theil Index, Saeid Tizpaz-Niari, Olga Kosheleva, Vladik Kreinovich

Departmental Technical Reports (CS)

In general, in statistics, the most widely used way to describe the difference between different elements of a sample if by using standard deviation. This characteristic has a nice property of being decomposable: e.g., to compute the mean and standard deviation of the income overall the whole US, it is sufficient to compute the number of people, mean, and standard deviation over each state; this state-by-state information is sufficient to uniquely reconstruct the overall standard deviation. However, e.g., for gauging income inequality, standard deviation is not very adequate: it provides too much weight to outliers like billionaires, and thus, does …


Update From Aristotle To Newton, From Sets To Fuzzy Sets, And From Sigmoid To Relu: What Do All These Transitions Have In Common?, Christian Servin, Olga Kosheleva, Vladik Kreinovich 2024 El Paso Community College

Update From Aristotle To Newton, From Sets To Fuzzy Sets, And From Sigmoid To Relu: What Do All These Transitions Have In Common?, Christian Servin, Olga Kosheleva, Vladik Kreinovich

Departmental Technical Reports (CS)

In this paper, we show that there is a -- somewhat unexpected -- common trend behind several seemingly unrelated historic transitions: from Aristotelian physics to modern (Newton's) approach, from crisp sets (such as intervals) to fuzzy sets, and from traditional neural networks, with close-to-step-function sigmoid activation functions to modern successful deep neural networks that use a completely different ReLU activation function. In all these cases, the main idea of the corresponding transition can be explained, in mathematical terms, as going from the first order to second order differential equations.


How To Make A Decision Under Interval Uncertainty If We Do Not Know The Utility Function, Jeffrey Escamilla, Vladik Kreinovich 2024 The University of Texas at El Paso

How To Make A Decision Under Interval Uncertainty If We Do Not Know The Utility Function, Jeffrey Escamilla, Vladik Kreinovich

Departmental Technical Reports (CS)

Decision theory describes how to make decisions, in particular, how to make decisions under interval uncertainty. However, this theory's recommendations assume that we know the utility function -- a function that describes the decision maker's preferences. Sometimes, we can make a recommendation even when we do not know the utility function. In this paper, we provide a complete description of all such cases.


Paradox Of Causality And Paradoxes Of Set Theory, Alondra Baquier, Bradley Beltran, Gabriel Miki-Silva, Olga Kosheleva, Vladik Kreinovich 2024 The University of Texas at El Paso

Paradox Of Causality And Paradoxes Of Set Theory, Alondra Baquier, Bradley Beltran, Gabriel Miki-Silva, Olga Kosheleva, Vladik Kreinovich

Departmental Technical Reports (CS)

Logical paradoxes show that human reasoning is not always fully captured by the traditional 2-valued logic, that this logic's extensions -- such as multi-valued logics -- are needed. Because of this, the study of paradoxes is important for research on multi-valued logics. In this paper, we focus on paradoxes of set theory. Specifically, we show their analogy with the known paradox of causality, and we use this analogy to come up with similar set-theoretic paradoxes.


Number Representation With Varying Number Of Bits, Anuradha Choudhury, Md Ahsanul Haque, Saeefa Rubaiyet Nowmi, Ahmed Ann Noor Ryen, Sabrina Saika, Vladik Kreinovich 2024 The University of Texas at El Paso

Number Representation With Varying Number Of Bits, Anuradha Choudhury, Md Ahsanul Haque, Saeefa Rubaiyet Nowmi, Ahmed Ann Noor Ryen, Sabrina Saika, Vladik Kreinovich

Departmental Technical Reports (CS)

In a computer, usually, all real numbers are stored by using the same number of bits: usually, 8 bytes, i.e., 64 bits. This amount of bits enables us to represent numbers with high accuracy -- up to 19 decimal digits. However, in most cases -- whether we process measurement results or whether we process expert-generated membership degrees -- we do not need that accuracy, so most bits are wasted. To save space, it is therefore reasonable to consider representations with varying number of bits. This would save space used for representing numbers themselves, but we would also need to store …


Data Fusion Is More Complex Than Data Processing: A Proof, Robert Alvarez, Salvador Ruiz, Martine Ceberio, Vladik Kreinovich 2024 The University of Texas at El Paso

Data Fusion Is More Complex Than Data Processing: A Proof, Robert Alvarez, Salvador Ruiz, Martine Ceberio, Vladik Kreinovich

Departmental Technical Reports (CS)

Empirical data shows that, in general, data fusion takes more computation time than data processing. In this paper, we provide a proof that data fusion is indeed more complex than data processing.


How To Fairly Allocate Safety Benefits Of Self-Driving Cars, Fernando Munoz, Christian Servin, Vladik Kreinovich 2024 The University of Texas at El Paso

How To Fairly Allocate Safety Benefits Of Self-Driving Cars, Fernando Munoz, Christian Servin, Vladik Kreinovich

Departmental Technical Reports (CS)

In this paper, we describe how to fairly allocated safety benefits of self-driving cars between drivers and pedestrians -- so as to minimize the overall harm.


Using Known Relation Between Quantities To Make Measurements More Accurate And More Reliable, Niklas Winnewisser, Felix Mett, Michael Beer, Olga Kosheleva, Vladik Kreinovich 2024 Leibniz University Hannover

Using Known Relation Between Quantities To Make Measurements More Accurate And More Reliable, Niklas Winnewisser, Felix Mett, Michael Beer, Olga Kosheleva, Vladik Kreinovich

Departmental Technical Reports (CS)

Most of our knowledge comes, ultimately, from measurements and from processing measurement results. In this, metrology is very valuable: it teaches us how to gauge the accuracy of the measurement results and of the results of data processing, and how to calibrate the measuring instruments so as to reach the maximum accuracy. However, traditional metrology mostly concentrates on individual measurements. In practice, often, there are also relations between the current values of different quantities. For example, there is usually an known upper bound on the difference between the values of the same quantity at close moments of time or at …


Applications Of Survival Estimation Under Stochastic Order To Cancer: The Three Sample Problem, Sage Vantine 2024 St. Mary's University

Applications Of Survival Estimation Under Stochastic Order To Cancer: The Three Sample Problem, Sage Vantine

Honors Program Theses and Research Projects

Stochastic ordering of probability distributions holds various practical applications. However, in real-world scenarios, the empirical survival functions extracted from actual data often fail to meet the requirements of stochastic ordering. Consequently, we must devise methods to estimate these distribution curves in order to satisfy the constraint. In practical applications, such as the investigation of the time of death or the progression of diseases like cancer, we frequently observe that patients with one condition are expected to exhibit a higher likelihood of survival at all time points compared to those with a different condition. Nevertheless, when we attempt to fit a …


Analyzing The Influence Of Design And Operating Conditions On Combustion And Emissions In Premixed Turbulent Flames: A Comprehensive Review, Medhat Elkelawy Prof. Dr. Eng., E. A. El Shenawy Prof. Dr., Hagar Alm-Eldin Bastawissi, Ibrahim Ali Mousa Eng., Mohamed M. Abdel-Raouf Ibrahim Dr. Eng. 2024 Mechanical Power Engineering Departments, Faculty of Engineering, Tanta University, Tanta, Egypt

Analyzing The Influence Of Design And Operating Conditions On Combustion And Emissions In Premixed Turbulent Flames: A Comprehensive Review, Medhat Elkelawy Prof. Dr. Eng., E. A. El Shenawy Prof. Dr., Hagar Alm-Eldin Bastawissi, Ibrahim Ali Mousa Eng., Mohamed M. Abdel-Raouf Ibrahim Dr. Eng.

Journal of Engineering Research

Recently, premixed combustion has dominated the field of combustion research worldwide. The current work is a review that addresses the effects of design and operating regimes on the combustion and emission characteristics of premixed turbulent flames. The study accounts for recent developments aimed at overcoming combustor operability issues that influence emissions and flame stability. Various experimental setups have been utilized in investigations, with results pertaining to performance and emissions concerning premixed turbulent flames. Thus, the objective of this paper is to provide a comprehensive review of the effects of swirl vane angles and equivalence fuel-air ratios for tests conducted both …


A Cohomological Perspective To Nonlocal Operators, Nicholas White 2024 University of Nebraska - Lincoln

A Cohomological Perspective To Nonlocal Operators, Nicholas White

Honors Theses

Nonlocal models have experienced a large period of growth in recent years. In particular, nonlocal models centered around a finite horizon have been the subject of many novel results. In this work we consider three nonlocal operators defined via a finite horizon: a weighted averaging operator in one dimension, an averaging differential operator, and the truncated Riesz fractional gradient. We primarily explore the kernel of each of these operators when we restrict to open sets. We discuss how the topological structure of the domain can give insight into the behavior of these operators, and more specifically the structure of their …


Birkhoff Summation Of Irrational Rotations: A Surprising Result For The Golden Mean, Heather Moore 2024 Portland State University

Birkhoff Summation Of Irrational Rotations: A Surprising Result For The Golden Mean, Heather Moore

University Honors Theses

This thesis presents a surprising result that the difference in a certain sums of constant rotations by the golden mean approaches exactly 1/5. Specifically, we focus on the Birkhoff sums of these rotations, with the number of terms equal to squared Fibonacci numbers. The proof relies on the properties of continued fraction approximants, Vajda's identity and the explicit formula for the Fibonacci numbers.


Quasistationary Distribution For The Invasion Model On A Complete Bipartite Graph, Clayton Allard, Iddo Ben-Ari, Shrikant Chand, Van Hovenga, Edith Lee, Julia Shapiro 2024 University of British Columbia, Vancouver, BC V6T 1Z4, Canada

Quasistationary Distribution For The Invasion Model On A Complete Bipartite Graph, Clayton Allard, Iddo Ben-Ari, Shrikant Chand, Van Hovenga, Edith Lee, Julia Shapiro

Journal of Stochastic Analysis

No abstract provided.


The Basel Problem And Summing Rational Functions Over Integers, Pranjal Jain 2024 Indian Institute of Science Education and Research, Pune

The Basel Problem And Summing Rational Functions Over Integers, Pranjal Jain

Rose-Hulman Undergraduate Mathematics Journal

We provide a general method to evaluate convergent sums of the form ∑_{k∈Z} R(k) where R is a rational function with complex coefficients. The method is entirely elementary and does not require any calculus beyond some standard limits and convergence criteria. It is inspired by a geometric solution to the famous Basel Problem given by Wästlund (2010), so we begin by demonstrating the method on the Basel Problem to serve as a pilot application. We conclude by applying our ideas to prove Euler’s factorisation for sin x which he originally used to solve the Basel Problem.


Understanding Waveguides In Resonance, Pieter Johannes Daniel Vandenberge 2024 Portland State University

Understanding Waveguides In Resonance, Pieter Johannes Daniel Vandenberge

Dissertations and Theses

Several important classes of modern optical waveguides, including anti-resonant reflecting and photonic bandgap fibers, make use of geometries that guide energy in low refractive index material, a property that makes them of significant interest in numerous applications, notably including high-power delivery and guidance. These waveguides frequently exhibit resonance phenomena, in which their ability to propagate an input signal is sharply curtailed at particular operating frequencies. In this work we detail new advances in understanding these resonance effects and their implications for numerical modeling of these structures.

Part 1 focuses on the fields of slab waveguides, relatively simple structures for which …


Wang Tilings In Arbitrary Dimensions, Ian Tassin 2024 Oregon State University

Wang Tilings In Arbitrary Dimensions, Ian Tassin

Rose-Hulman Undergraduate Mathematics Journal

This paper makes a new observation about arbitrary dimensional Wang Tilings,
demonstrating that any d -dimensional tile set that can tile periodically along d − 1 axes must be able to tile periodically along all axes.
This work also summarizes work on Wang Tiles up to the present day, including
definitions for various aspects of Wang Tilings such as periodicity and the validity of a tiling. Additionally, we extend the familiar 2D definitions for Wang Tiles and associated properties into arbitrary dimensional spaces. While there has been previous discussion of arbitrary dimensional Wang Tiles in other works, it has been …


Algorithmic Design And Computational Modeling Using Dynamic Spectrum Allocation Techniques To Optimize Bandwidth Management In Wireless Communication Systems, Ankit Walishetti 2024 Illinois Math and Science Academy

Algorithmic Design And Computational Modeling Using Dynamic Spectrum Allocation Techniques To Optimize Bandwidth Management In Wireless Communication Systems, Ankit Walishetti

Distinguished Student Work

This study aims to address the pressing need for efficient spectrum management methodologies in wireless communication systems by developing innovative sorting and allocation algorithms. Leveraging Dynamic Spectrum Allocation (DSA) techniques, this research devises strategies to optimize the utilization of bandwidth within existing spectrum space, ultimately reducing the need for network infrastructure expansion.

Ensuring thorough coverage of DSA techniques, 5 distinct transmitter sorting algorithms were programmed and tested across 8 performance metrics designed to measure specific capabilities. For consistency, a single bandwidth allocation program was designed to ‘pack’ transmitters starting from the left endpoint of the spectrum space. Progressively varying the …


Fusion In Supersolvable Hall Subgroups, MUHAMMET YASİR KIZMAZ 2024 TÜBİTAK

Fusion In Supersolvable Hall Subgroups, Muhammet Yasi̇r Kizmaz

Turkish Journal of Mathematics

Let H be a supersolvable Hall π -subgroup of a finite group G. We prove that G has a normal π -complement if and only if H controls G-fusion in H.


Digital Commons powered by bepress