Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2018

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 1321 - 1350 of 1373

Full-Text Articles in Mechanical Engineering

Fabrication And Characterization Of Advanced Materials Using Laser Metal Deposition From Elemental Powder Mixture, Xueyang Chen Jan 2018

Fabrication And Characterization Of Advanced Materials Using Laser Metal Deposition From Elemental Powder Mixture, Xueyang Chen

Doctoral Dissertations

"Over the past decades of years, a great deal of money has been spent to machine large and complex parts from high-performance metals (i.e., titanium components for aerospace applications), so users attempt to circumvent the high cost of materials. Laser metal deposition (LMD) is an additive manufacturing technique capable of fabricating complicated structures with superior properties. This dissertation aims to improve the applications of LMD technique for manufacturing metallic components by using various elemental powder mixture according to the following three categories of research topics. The first research topic is to investigate and develop a cost-effective possibility by using elemental …


Laser Foil Printing And Surface Polishing Processes, Chen Chen Jan 2018

Laser Foil Printing And Surface Polishing Processes, Chen Chen

Doctoral Dissertations

"A foil-based additive manufacturing technology for fabricating metal parts, called Laser Foil Printing (LFP), was proposed and developed in this dissertation. The manufacturing sub-processes comprising the LFP technology were comprehensively studied, which include the laser spot welding of foil, laser raster-scan welding of foil, laser cutting of foil, and laser polishing processes. The fabricated free-form parts were demonstrated and own better mechanical properties (micro hardness and tensile strength) than the raw material, because of the rapid-cooling process of laser welding. The full and strong bond between layers was formed by the laser welding process, with no micro-cracks or pores observed. …


Research On Additive Manufacturing Of Metallic Glass Alloy, Yiyu Shen Jan 2018

Research On Additive Manufacturing Of Metallic Glass Alloy, Yiyu Shen

Doctoral Dissertations

"The required rapid cooling has limited the dimension of the Bulk Metallic glasses (BMGs) produced by traditional method, and hence has seriously limited their applications, despite their remarkable mechanical properties. In this present project, a detailed study is conducted on the methodology and understanding of manufacturing large Zr- based metallic glass part by laser based additive manufacturing technology, which breaks the size limitation. The first research issue proposes and develops a new additive manufacturing technology, named Laser-Foil-Printing (LFP). Sheet foils of LM105 (Zr52.5Ti5Al10Ni14.6Cu17.9 (at. %)) metallic glass are used as feed …


Investigation Of Microstructure And Mechanical Properties By Direct Metal Deposition, Jingwei Zhang Jan 2018

Investigation Of Microstructure And Mechanical Properties By Direct Metal Deposition, Jingwei Zhang

Doctoral Dissertations

"Microstructure and properties of Direct Metal Deposition (DMD) parts are very crucial to meeting industrial requirements of parts quality. Prediction, and control of microstructure and mechanical properties have attracted much attention during conventional metal manufacturing process under different conditions. However, there is few investigations focused on microstructure simulation and mechanical properties control under different process parameters during DMD process. This dissertation is intended to develop a multiscale model to investigate Ti6Al4V grain structure development and explore Ti6Al4V based functionally graded material (FGM) deposit properties during DMD process. The first research topic is to investigate and develop a cellular automaton-finite element …


Monitoring Of Hybrid Manufacturing Using Acoustic Emission Sensor, Haythem Gaja Jan 2018

Monitoring Of Hybrid Manufacturing Using Acoustic Emission Sensor, Haythem Gaja

Doctoral Dissertations

"The approach of hybrid manufacturing addressed in this research uses two manufacturing processes, one process builds a metal part using laser metal deposition, and the other process finishes the part using a milling machining. The ability to produce complete functioning parts in a short time with minimal cost and energy consumption has made hybrid manufacturing popular in many industries for parts repair and rapid prototyping. Monitoring of hybrid manufacturing processes has become popular because it increases the quality and accuracy of the parts produced and reduces both costs and production time. The goal of this work is to monitor the …


Modeling And Characterization Of Thermo-Oxidative Behavior Of Bismaleimide Composites, Rafid Muhammad Hussein Jan 2018

Modeling And Characterization Of Thermo-Oxidative Behavior Of Bismaleimide Composites, Rafid Muhammad Hussein

Doctoral Dissertations

"High-temperature polymer matrix composites (HTPMCs) are susceptible to thermo-oxidation, which accelerates the composites' degradation and reduces the service life. Mechanical properties of HTPMCs deteriorate due to coupled thermo-oxidation and cross-linking mechanisms. Bismaleimides (BMIs) are commonly used high-temperature resins for aerospace applications. This work presents the viability of using experimental weight loss to model the spatial distribution of oxidation when the oxidized polymer matrix is not discernible. Three tasks are introduced: (1) Anisotropic oxidation prediction using optimized weight loss behavior of bismaleimide composites, (2) A multi-scale modeling of thermo-oxidative effects on the flexural behavior of cross-ply bismaleimide composites, and (3) Thermo-oxidative …


Modeling And Control Of Probe-On-Probe Dynamics In Dual-Probe Atomic Force Microscopy, Ayad Al-Ogaidi Jan 2018

Modeling And Control Of Probe-On-Probe Dynamics In Dual-Probe Atomic Force Microscopy, Ayad Al-Ogaidi

Doctoral Dissertations

“The atomic force microscope (AFM) is a widely used instrument for imaging and direct manipulation of materials and particles at the nanoscale. The AFM uses a probe, which is a microcantilever with a sharp point at the end. Typically, the AFM is constructed with a single probe. The disadvantage of this construction is that it can only be used either for imaging or manipulation in one implementation. An AFM was constructed using two probes, permitting simultaneous imaging and manipulation. A dual-probe AFM (DP-AFM) provides a foundation for feedback controlled manipulation.

Paper I investigates probe-on-probe contact stability and examines the dynamics …


Effects Of Milling Methods, Cooling Strategies And End-Mill Coatings On Machinability In High Speed End-Milling Of Inconel- 718 Using Carbide End-Mills, Paras Mohan Jasra Jan 2018

Effects Of Milling Methods, Cooling Strategies And End-Mill Coatings On Machinability In High Speed End-Milling Of Inconel- 718 Using Carbide End-Mills, Paras Mohan Jasra

Doctoral Dissertations

“Inconel-718 superalloy is used extensively in aerospace and nuclear industries due to its excellent properties such as: high strength-to-weight ratio, ability to retain its properties at high temperature, high corrosion and creep resistance. However, Inconel-718 is characterized as a “difficult-to-cut metal”, because it poses severe problems during machining such as: high temperature at the cutting zone due to low thermal conductivity, hardening tendency at elevated temperature, high cutting forces, rapid tool wear and high chemical affinity with many cutting tools. Appropriate cooling strategies, milling methods, tool coatings and cutting speeds play important roles in addressing these problems. This research presents …


Multiscale Approaches Toward Advanced Lithium-Ion Battery: From Nano To Meso Scale, Susmita Sarkar Jan 2018

Multiscale Approaches Toward Advanced Lithium-Ion Battery: From Nano To Meso Scale, Susmita Sarkar

Masters Theses

“Battery performance and its degradation are determined by various aspects such as the transport of ions and electrons through heterogeneous internal structures composed of constituent particles, kinetic reactions at the interfaces, and a corresponding interplay between mechanical, chemical, and thermal responses. Further, modern battery materials require a variety of engineering processes such as coating, doping and mixing. As a result, in order to fully understand the behavior of the battery material and improve battery performance, it is necessary to understand and control the individual particle behavior and then connect it to the electrode. This study elucidated the physical phenomena associated …


Effects Of Air-Fuel Ratio And Operating Conditions On Particle Emissions From A Small Diesel Engine, Odinmma John-Paul Ofili Jan 2018

Effects Of Air-Fuel Ratio And Operating Conditions On Particle Emissions From A Small Diesel Engine, Odinmma John-Paul Ofili

Master’s Theses

Automotive engineers typically increase the air-fuel ratio (AFR) of an engine to control the amount of smoke emitted, but it not quite known how this process affects particulate number (PN). In the work presented, AFR was independently varied to study its effects on PN. It was found that increasing the AFR reduced the concentrations of larger particles from 108 #/cm3 to 106 #/cm3 which is an effect observable as a reduction in smoke. However, the same increases in AFR only resulted in an energy specific PN change from 1015 #/kWh to 1014 #/kWh. The …


Effect Of Poisson’S Ratio On Young's Modulus Characterization Using Ultrasonic Technique By Modeling, Michael Onyetube Jan 2018

Effect Of Poisson’S Ratio On Young's Modulus Characterization Using Ultrasonic Technique By Modeling, Michael Onyetube

Electronic Theses and Dissertations

The past 27 years has witnessed a revolutionary growth in the progress of material development and application in almost all industry and business sectors, and this seems to be continuing even today. So many material-driven innovations have enabled the global spread in technology and improvements in capability, ranging from communications to aerospace and healthcare, to automotive and agriculture. Mechanical behavior of elastic materials is modeled by two main independent constants; Young’s modulus and Poisson’s ratio. An accurate measurement of both constants is necessary in most engineering applications, for example, the standard materials used for the calibration of some equipment, quality …


Development Of Material For 3d Printed Habitats With Extraplanetary Applications, Taylor Wait Jan 2018

Development Of Material For 3d Printed Habitats With Extraplanetary Applications, Taylor Wait

Electronic Theses and Dissertations

3D printing, also called Additive Manufacturing, has increasingly become a focus for research because of the potential to replace complicated assemblies or complex parts with a single printed item. The space industry is very interesting in studying 3d printing with parts being tested and used on rockets, a 3D printer being installed at the International Space Station and is being developed for use in manned exploration of extraplanetary bodies to build habitats. To encourage teams from around the world to develop technologies and materials for autonomous habitat construction using minimal Earth exports, NASA created the 3D Printed Habitat Challenge. NASA …


Simulation Of Different Rib Shapes In Square Channel, Md Sahedul Islam Jan 2018

Simulation Of Different Rib Shapes In Square Channel, Md Sahedul Islam

Electronic Theses and Dissertations

This study investigates heat transfer and pressure drop for rib-roughened square channel without bleed. To optimize the shape of rib, CFD tools were used to model and simulate channel flow with a variety of rib angles and geometries. To validate simulations and determine the turbulence model, experimental results for two-pass channels with ribs at 45˚ angles with BR = 0 and Re = 25,000 was compared. It was found after conducting simulations with different turbulence models that SST turbulence model gave the best results.


A Quantitative Environmental Assessment Of Incorporating Torrefaction Into Farming Enterprises In Eastern South Dakota, Dinesh Fuyal Jan 2018

A Quantitative Environmental Assessment Of Incorporating Torrefaction Into Farming Enterprises In Eastern South Dakota, Dinesh Fuyal

Electronic Theses and Dissertations

The use of renewable energy sources has been increasing in the recent years due to population growth and environmental concerns. Biomass is a promising energy source that can be used to produce biofuels or torrefied pellets. Torrefied biomass may be used in power plants, industrial and residential heating, feedstocks for gasification, air and water filtrating, and soil amendment. The interest of torrefied pellets as energy sources for various applications has been increased in the recent years due to the concerns about energy security and environmental issues. This study focuses on the economic and environmental assessment of agricultural feedstocks like corn …


Simulation Of An Ethylene Flame With Turbulence, Soot And Radiation Modeling, Santu Golder Jan 2018

Simulation Of An Ethylene Flame With Turbulence, Soot And Radiation Modeling, Santu Golder

Electronic Theses and Dissertations

This thesis will investigate soot models that are available in commercial codes. We will look at the effect of turbulence models, gravity, soot models and radiation. Simulations will be compared to Coppalle and Joyeux [1]. The flame is an ethylene air diffusion flame at a Reynolds number of 5700. Simulations show the SST turbulence model, one-step soot model and Rosseland radiation model including gravity agree well with experimental data (temperature and soot). Flamelet soot modeling from Carbonell et al. [2] and flamelet radiation modeling from Doom [3] has been incorporated and compared as well.


Evaluation Of The Mechanical Properties Of 3d Printed Carbon Fiber Composites, Max James Sauer Jan 2018

Evaluation Of The Mechanical Properties Of 3d Printed Carbon Fiber Composites, Max James Sauer

Electronic Theses and Dissertations

Studies have been done involving the use of carbon fiber as a reinforcement for three dimensional (3D) printed parts. The Markforged Mark Two is a commercial grade 3D printer capable of printing parts reinforced with continuous fibers such as carbon fiber, Kevlar, and fiberglass. Short Carbon Fiber Composite tensile specimen were printed on both a Markforged Mark Two and Flashforge Creator Pro using Markforged Onyx filament. The results of these parts were compared for their tensile properties, dimensional accuracy, and mass estimates. The Creator Pro was capable of producing stronger parts on average, while the Mark Two produced more dimensionally …


Topology Optimization Of Lightweight Structural Composites Inspired By Cuttlefish Bone, Varun Kumar Gadipudi Jan 2018

Topology Optimization Of Lightweight Structural Composites Inspired By Cuttlefish Bone, Varun Kumar Gadipudi

Electronic Theses and Dissertations

Lightweight material structure is a crucial subject in product design. The lightweight material has high strength to weight proportion which turns into an immense fascination and a territory of investigation for the researchers as its application is wide and expanding consistently. Lightweight composite material design is accomplished by choice of the cellular structure and its optimization. Cellular structure is utilized as it has wide multifunctional properties with lightweight characteristics. Unless it has been topologically optimized, each part in a assembly most likely weighs more than it needs to. Additional weight implies abundance materials are being utilized, loads on moving parts …


Bio-Mimetic Design With 3d Printable Composites, Ramya Mitra Patnam Damodaram Jan 2018

Bio-Mimetic Design With 3d Printable Composites, Ramya Mitra Patnam Damodaram

Electronic Theses and Dissertations

Weight and stiffness are key factors in the advancement of materials and parts for use in numerous industries. Lightweight cellular structures are broadly utilized for this reason. However, these structures must satisfy several key constraints: they should be light yet structurally safe, sustainable in different loading conditions, resource efficient and easy to maintain. Bio-inspired materials/structures which results in desirable material features are a significant inspiration for engineered cellular structures. Cellular structures can be designed to have multifunctional properties along with lightweight characteristics. Currently, these structures with high strength to weight ratio are widely applied in many fields such as automotive, …


Simulation Of Non-Premixed Ethylene-Air Crossflow Jet Flame, Jennifer Onyinye Chikelu Jan 2018

Simulation Of Non-Premixed Ethylene-Air Crossflow Jet Flame, Jennifer Onyinye Chikelu

Electronic Theses and Dissertations

Computational fluid dynamics tool has been employed in the past to determine and analyze efficiency or performance in combustion engines and for combustion analysis. This paper represents a systematic investigation on the best model predicts the temperature and soot production in coflow jet flame, by applying various RANS turbulent model, soot models and radiation models in presence or absence of gravity. It also applies this model predicted in crossflow jet flame and investigates the velocity ratio (ratio of the velocity of fuel jet to the velocity of air stream) variation effect on temperature and soot production. ANSYS-Fluent CFD software tool …


Development Of An Indoor Multirotor Testbed For Experimentation On Autonomous Guidance Strategies, Kidus Guye Jan 2018

Development Of An Indoor Multirotor Testbed For Experimentation On Autonomous Guidance Strategies, Kidus Guye

Electronic Theses and Dissertations

Despite the vast popularity of rotary wing unmanned aerial vehicles and research centres that develop their guidance software, there are only a limited number of references that provide an exhaustive description of a step-by-step procedure to build-up a multirotor testbed. In response to such need, the first part of this thesis aims to describe, in detail, the complete procedure to establish and operate an autonomous multirotor unmanned aerial vehicle indoor experimental platform to test and validate guidance, navigation and control strategies. Both hardware and software aspects of the testbed are described to offer a complete understanding of the different aspects. …


Investigation Into Integrated Free-Form And Precomputational Approaches For Aerostructural Optimization Of Wind Turbine Blades, Ryan Timothy Barrett Jan 2018

Investigation Into Integrated Free-Form And Precomputational Approaches For Aerostructural Optimization Of Wind Turbine Blades, Ryan Timothy Barrett

Theses and Dissertations

A typical approach to optimize wind turbine blades separates the airfoil shape design from the blade planform design. This approach is sequential, where the airfoils along the blade span are pre-selected or optimized and then held constant during the blade planform optimization. In contrast, integrated blade design optimizes the airfoils and the blade planform concurrently and thereby has the potential to reduce cost of energy (COE) more than sequential design. Nevertheless, sequential design is commonly performed because of the ease of precomputation, or the ability to compute the airfoil analyses prior to the blade optimization. This research investigates two integrated …


Radial And Longitudinal Motion Of The Arterial Wall: Their Relation To Pulsatile Pressure And Flow In The Artery, Dan Wang, Linda Vahala, Zhili Hao Jan 2018

Radial And Longitudinal Motion Of The Arterial Wall: Their Relation To Pulsatile Pressure And Flow In The Artery, Dan Wang, Linda Vahala, Zhili Hao

Mechanical & Aerospace Engineering Faculty Publications

The aim of this paper is to analyze the radial and longitudinal motion of the arterial wall in the context of pulsatile pressure and flow, and to understand their physiological implications for the cardiovascular system. A reexamination of the well-established one-dimensional governing equations for axial blood flow in the artery and the constitutive equation for the radial dilation of the arterial wall shows that two waves—a pulsatile pressure wave in the artery and a radial displacement wave in the arterial wall—propagate simultaneously along the arterial tree with the same propagation velocity, explaining why this velocity combines the physical properties and …


Enhance Flow Boiling In Microchannels By Regulating Two-Phase Transport Patterns, Wenming Li Jan 2018

Enhance Flow Boiling In Microchannels By Regulating Two-Phase Transport Patterns, Wenming Li

Theses and Dissertations

Flow boiling in microchannels is one of the most promising cooling techniques for microelectronics. Using latent heat by vaporization can significantly improve heat dissipation of high power density electronic devices. Most of the failure of electronic devices is induced by the occurrence of critical heat flux (CHF), which defines the maximum operating conditions. However, the vigorous rapid generation of vapor through phase change leads to chaotic two-phase flows in microchannels, resulting in flowinstability in terms of severe flow, temperature and pressure drop fluctuations. Particularly, the very well-known bubble confinement exacerbates the two-phase flow instabilities and greatly deteriorates heat transfer performance …


Hydrogen Fuel Cells, Sydney Pilgrim, Skyler Smith Jan 2018

Hydrogen Fuel Cells, Sydney Pilgrim, Skyler Smith

ENERGY Research and Lesson Plans

Hydrogen fuel cells are hydrogen powered energy sources. They convert chemical energy into electrical energy by separating water molecules into the two elements that make up water, Hydrogen (2) and Oxygen (1). Hydrogen fuel cells are looking to become a paramount energy producer to avoid consuming fossil fuels for power. Along with the abundance of Hydrogen in the atmosphere being a benefit of using Hydrogen powered fuel cells, the only emission from these energy sources is water vapor. Many car engines only operate at a 20% fuel efficiency, whereas fuel cell powered cars utilize 60% of the energy produced. Although …


Principles Of Wind Energy Production, Willie Haynes, Dianne Lhotte, Johnetta Moore Jan 2018

Principles Of Wind Energy Production, Willie Haynes, Dianne Lhotte, Johnetta Moore

ENERGY Research and Lesson Plans

Three public school teachers designed basic wind turbine energy production tests to help them teach wind energy principles to middle and high school students. Variables affecting wind turbine energy production were identified (distance from wind tunnel, blade design, angle of attack, and wind speed), and experiments were conducted to test each variable. This research aligns with Georgia DOE curriculum standard STEM-FET-3.7: Apply STEM knowledge and skills through hands-on research and lab experiments that are focused upon recreating the inventions and social solutions that were realized in the past, present, and possible future. These experiments will be a part of an …


Energy Harvesting Nanocoated Piezoceramics For Low Power Systems, Quinten Humphrey Jan 2018

Energy Harvesting Nanocoated Piezoceramics For Low Power Systems, Quinten Humphrey

Electronic Theses and Dissertations

No abstract provided.


Elastodynamic Model For Wind Induced Ground Motion, Mohammad Mohammadi Jan 2018

Elastodynamic Model For Wind Induced Ground Motion, Mohammad Mohammadi

Electronic Theses and Dissertations

No abstract provided.


Designing And Testing 3-D Printed Wafer-Box With Embedded Pzt Sensors To Identify The Shape Effect On Energy Harvesting, Ahmad Jami Safayet Jan 2018

Designing And Testing 3-D Printed Wafer-Box With Embedded Pzt Sensors To Identify The Shape Effect On Energy Harvesting, Ahmad Jami Safayet

Electronic Theses and Dissertations

Piezoelectric energy has been recently paid attention in the field of alternative energy. Day by day the traditional energy sources including Coal tar and oils are becoming scarce. People are heading to an alternative energy source to meet the future energy demand. Piezoelectric energy is one of the competitive energy sources compared to the conventional renewable energy sources including solar, wind, and geothermal power and so on. This energy production method bears enormous research potential because it can be used as the roadway for a new method of power generation. This research project aimed to identify which shaped wafer-box produced …


Reduced Exhaust Emissions Through Blending N-Butanol With Ultra Low Sulfur Diesel And Synthetic Paraffinic Kerosene In Reactivity Controlled Compression Ignition Combustion, Remi Gaubert Jan 2018

Reduced Exhaust Emissions Through Blending N-Butanol With Ultra Low Sulfur Diesel And Synthetic Paraffinic Kerosene In Reactivity Controlled Compression Ignition Combustion, Remi Gaubert

Electronic Theses and Dissertations

Increasing restrictions on the emitted exhaust emissions in diesel engines are becoming a more challenging task than in previous years. An electronic common rail fuel injection system and a port fuel injection (PFI) system were developed for an experimental engine to research dual fuel combustion. The experimental research was conducted at 1500 rpm and 4, 5, and 6 bar indicated mean effective pressure (IMEP). n-Butanol was port fuel injected at a 60% by mass fraction coupled with direct injection (DI) of three fuels, including ultra-low sulfur diesel (ULSD RCCI), a 50-50 wt-% blend of ULSD and butanol (ULSD-Bu RCCI), and …


Geometric Optimization Of A Heaving Point Absorber Wave Energy Converter, Ian Riley Jan 2018

Geometric Optimization Of A Heaving Point Absorber Wave Energy Converter, Ian Riley

Electronic Theses and Dissertations

Wave energy shows significant potential for development into a competitive renewable energy source. Non-renewable resources are finite and contribute to adverse effects on the environment. Development of wave energy conversion devices that use heave motion as the primary driver for converting wave energy into electrical potential is explored through optimizing the geometry of an axisymmetric partially submerged buoy in deep water. The governing equations of motion and hydrodynamic forces are solved for in one degree of freedom using ANSYS Aqwa. An external PTO device is simulated to induce power capture in the system. Four different geometric shapes are tested and …