Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2018

Aerospace Engineering

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 94

Full-Text Articles in Mechanical Engineering

Imaging Stress And Magnetism At High Pressures Using A Nanoscale Quantum Sensor, S. Hsieh, P. Bhattacharyya, C. Zu, T. Mittiga, T. J. Smart, F. Machado, B. Kobrin, T. O. Hohn, N. Z. Rui, Mehdi Kamrani, S. Chatterjee, S. Choi, M. Zaletel, V. V. Struzhkin, J. E. Moore, Valery I. Levitas, R. Jeanloz, N. Y. Yao Dec 2018

Imaging Stress And Magnetism At High Pressures Using A Nanoscale Quantum Sensor, S. Hsieh, P. Bhattacharyya, C. Zu, T. Mittiga, T. J. Smart, F. Machado, B. Kobrin, T. O. Hohn, N. Z. Rui, Mehdi Kamrani, S. Chatterjee, S. Choi, M. Zaletel, V. V. Struzhkin, J. E. Moore, Valery I. Levitas, R. Jeanloz, N. Y. Yao

Aerospace Engineering Publications

Pressure alters the physical, chemical and electronic properties of matter. The development of the diamond anvil cell (DAC) enables tabletop experiments to investigate a diverse landscape of high-pressure phenomena ranging from the properties of planetary interiors to transitions between quantum mechanical phases. In this work, we introduce and utilize a novel nanoscale sensing platform, which integrates nitrogen-vacancy (NV) color centers directly into the culet (tip) of diamond anvils. We demonstrate the versatility of this platform by performing diffraction-limited imaging (~600 nm) of both stress fields and magnetism, up to pressures ~30 GPa and for temperatures ranging from 25-340 K. For ...


Robust State Dependent Riccati Equation Based Robot Manipulator Control, Ming Xin, S. N. Balakrishnan, Zhongwu Huang Dec 2018

Robust State Dependent Riccati Equation Based Robot Manipulator Control, Ming Xin, S. N. Balakrishnan, Zhongwu Huang

S. N. Balakrishnan

We present a new optimal control approach to robust control of robot manipulators in the framework of state dependent Riccati equation (SDRE) technique. To treat this highly nonlinear control system, we formulate it as a nonlinear optimal regulator problem. SDRE technique was used to synthesize an optimal controller to this class of robot control problem. We also synthesize a neural network based extra controller to achieve the robustness in the presence of the parameter uncertainties. A typical two-link robot position control problem was studied to show the effectiveness of SDRE approach and robust extra control design to robotic application.


Cfd Modeling Of Smoke Movement In An Atrium, Robin Wu Dec 2018

Cfd Modeling Of Smoke Movement In An Atrium, Robin Wu

UNLV Theses, Dissertations, Professional Papers, and Capstones

The purpose of this paper is to better understand the behavior of smoke movement in an atrium. Thus gives first responders and civilians in and out of building a better understanding

With the advancements of modern technology, computers and softwares make simulation models possible such as fire models to simulate fire and smoke movements. In this paper, a computational fluid dynamic (CFD) software Fire Dynamic Simulator (FDS) is used to conduct a series of atrium tests to investigate the effectiveness of smoke exhaust systems. FDS solves the Navier-Stokes equations appropriate for low speed flows (Ma < 0.3) with an emphasis on smoke, heat transport and CO2 concentrations from fires. The default turbulence model used in FDS simulation is the Large Eddy Simulation (LES), which is the solution of Navier-Stokes equations at low speed.

The compartment tested was 9 ...


Dynamic Re-Optimization Of A Mems Controller In Presence Of Unmodeled Uncertainties, Nishant Unnikrishnan, S. N. Balakrishnan, Venkat Durbha Dec 2018

Dynamic Re-Optimization Of A Mems Controller In Presence Of Unmodeled Uncertainties, Nishant Unnikrishnan, S. N. Balakrishnan, Venkat Durbha

S. N. Balakrishnan

Online trained neural networks have become popular in recent years in designing robust and adaptive controllers for dynamic systems with uncertainties in their system equations because of their universal function approximation property. This paper discusses a technique that dynamically reoptimizes a Single Network Adaptive Critic (SNAC) based optimal controller in the presence of unmodeled uncertainties. The controller design is carried out in two steps: (i) synthesis of a set of online neural networks that capture the uncertainties in the plant equations on-line (ii) re-optimization of the existing optimal controller to drive the states of the plant to a desired reference ...


Solid State Aircraft Concept Overview, M. Shahinpoor, P. Jenkins, C. Smith, Kakkattukuzhy M. Isaac, T. Dalbello, Anthony Colozza Dec 2018

Solid State Aircraft Concept Overview, M. Shahinpoor, P. Jenkins, C. Smith, Kakkattukuzhy M. Isaac, T. Dalbello, Anthony Colozza

Kakkattukuzhy Isaac

Due to recent advances in polymers, photovoltaics, and batteries a unique type of aircraft may be feasible. This is a "solid-state" aircraft, with no conventional mechanical moving parts. Airfoil, propulsion, energy production, energy storage and control are combined in an integrated structure. The key material of this concept is an ionic polymeric-metal composite (IPMC) that provides source of control and propulsion. This material has the unique capability of deforming in an electric field and returning to its original shape when the field is removed. Combining the IPMC with thin-film batteries and thin-film photovoltaics provides both energy source and storage in ...


Intelligent Strain Sensing On A Smart Composite Wing Using Extrinsic Fabry-Perot Interferometric Sensors And Neural Networks, Kakkattukuzhy M. Isaac, Donald C. Wunsch, Steve Eugene Watkins, Rohit Dua, V. M. Eller Dec 2018

Intelligent Strain Sensing On A Smart Composite Wing Using Extrinsic Fabry-Perot Interferometric Sensors And Neural Networks, Kakkattukuzhy M. Isaac, Donald C. Wunsch, Steve Eugene Watkins, Rohit Dua, V. M. Eller

Kakkattukuzhy Isaac

Strain prediction at various locations on a smart composite wing can provide useful information on its aerodynamic condition. The smart wing consisted of a glass/epoxy composite beam with three extrinsic Fabry-Perot interferometric (EFPI) sensors mounted at three different locations near the wing root. Strain acting on the three sensors at different air speeds and angles-of-attack were experimentally obtained in a closed circuit wind tunnel under normal conditions of operation. A function mapping the angle of attack and air speed to the strains on the three sensors was simulated using feedforward neural networks trained using a backpropagation training algorithm. This ...


Weighting Matrix Design For Robust Monotonic Convergence In Norm Optimal Iterative Learning Control, Douglas A. Bristow Dec 2018

Weighting Matrix Design For Robust Monotonic Convergence In Norm Optimal Iterative Learning Control, Douglas A. Bristow

Douglas Bristow

In this paper we examine the robustness of norm optimal ILC with quadratic cost criterion for discrete-time, linear time-invariant, single-input single-output systems. A bounded multiplicative uncertainty model is used to describe the uncertain system and a sufficient condition for robust monotonic convergence is developed. We find that, for sufficiently large uncertainty, the performance weighting can not be selected arbitrarily large, and thus overall performance is limited. To maximize available performance, a time-frequency design methodology is presented to shape the weighting matrix based on the initial tracking error. The design is applied to a nanopositioning system and simulation results are presented.


Monotonic Convergence Of Iterative Learning Control For Uncertain Systems Using A Time-Varying Filter, Douglas A. Bristow, Andrew G. Alleyne Dec 2018

Monotonic Convergence Of Iterative Learning Control For Uncertain Systems Using A Time-Varying Filter, Douglas A. Bristow, Andrew G. Alleyne

Douglas Bristow

Iterative learning control (ILC) is a learning technique used to improve the performance of systems that execute the same task multiple times. Learning transient behavior has emerged as an important topic in the design and analysis of ILC systems. In practice, the learning control is often low-pass filtered with a ldquoQ-filterrdquo to prevent transient growth, at the cost of performance. In this note, we consider linear time-invariant, discrete-time, single-input single-output systems, and convert frequency-domain uncertainty models to a time-domain representation for analysis. We then develop robust monotonic convergence conditions, which depend directly on the choice of the Q-filter and are ...


High Bandwidth Control Of Precision Motion Instrumentation, Douglas A. Bristow, Jingyan Dong, Andrew G. Alleyne, Srinivasa M. Salapaka, Placid M. Ferreira Dec 2018

High Bandwidth Control Of Precision Motion Instrumentation, Douglas A. Bristow, Jingyan Dong, Andrew G. Alleyne, Srinivasa M. Salapaka, Placid M. Ferreira

Douglas Bristow

This article presents a high-bandwidth control design suitable for precision motion instrumentation. Iterative learning control (ILC), a feedforward technique that uses previous iterations of the desired trajectory, is used to leverage the repetition that occurs in many tasks, such as raster scanning in microscopy. Two ILC designs are presented. The first design uses the motion system dynamic model to maximize bandwidth. The second design uses a time-varying bandwidth that is particularly useful for nonsmooth trajectories such as raster scanning. Both designs are applied to a multiaxis piezoelectric-actuated flexure system and evaluated on a nonsmooth trajectory. The ILC designs demonstrate significant ...


Frequency Domain Analysis And Design Of Iterative Learning Control For Systems With Stochastic Disturbances, Douglas A. Bristow Dec 2018

Frequency Domain Analysis And Design Of Iterative Learning Control For Systems With Stochastic Disturbances, Douglas A. Bristow

Douglas Bristow

In this work we examine the performance of iterative learning control (ILC) for systems with non-repeating disturbances and random noise. Single-input, single- output linear time-invariant systems and iteration-invariant learning filters are considered. We find that a tradeoff exists between the convergence rate and converged error spectrum. Optimal filter designs, which are dependant on the disturbance and noise spectra, are developed. We also present simple design guidelines for the case when explicit models of disturbance and noise spectra are not available. A numerical design example is presented.


Design Of A Linear Time-Varying Cross-Coupled Iterative Learning Controller, K. L. Barton, Douglas A. Bristow, Andrew G. Alleyne Dec 2018

Design Of A Linear Time-Varying Cross-Coupled Iterative Learning Controller, K. L. Barton, Douglas A. Bristow, Andrew G. Alleyne

Douglas Bristow

In many manufacturing applications contour tracking is more important than individual axis tracking. Many control techniques, including iterative learning control (ILC), target individual axis error. Because individual axis error only indirectly relates to contour error, these approaches may not be very effective for contouring applications. Cross-coupled ILC (CCILC) is a variation on traditional ILC that targets the contour tracking directly. In contour trajectories with rapid changes, high frequency control is necessary in order to meet tracking requirements. This paper presents an improved CCILC that uses a linear time-varying (LTV) filter to provide high frequency control for short durations. The improved ...


Combined H∞-Feedback Control And Iterative Learning Control Design With Application To Nanopositioning Systems, Brian E. Helfrich, Chibum Lee, Douglas A. Bristow, Jingyan Dong, Srinivasa M. Salapaka, Placid M. Ferreira, X. H. Xiao, Andrew G. Alleyne Dec 2018

Combined H∞-Feedback Control And Iterative Learning Control Design With Application To Nanopositioning Systems, Brian E. Helfrich, Chibum Lee, Douglas A. Bristow, Jingyan Dong, Srinivasa M. Salapaka, Placid M. Ferreira, X. H. Xiao, Andrew G. Alleyne

Douglas Bristow

This paper examines a coordinated feedback and feedforward control design strategy for precision motion control (PMC) systems. It is assumed that the primary exogenous signals are repeated; including disturbances and references. Therefore, an iterative learning control (ILC) feedforward strategy can be used. The introduction of additional non-repeating exogenous signals, including disturbances, noise, and reset errors, necessitates the proper coordination between feedback and feedforward controllers to achieve high performance. A novel ratio of repeated versus non-repeated signal power in the frequency domain is introduced and defined as the repetitive-to-non-repetitive (RNR) ratio. This frequency specific ratio allows for a new approach to ...


Ultraviolet Imager Application For A Cube Satellite, Jason Grillo, Troy Hajjar, Brady Hill Dec 2018

Ultraviolet Imager Application For A Cube Satellite, Jason Grillo, Troy Hajjar, Brady Hill

Mechanical Engineering

This document serves as the final design review (FDR) report for the 2018 Cal Poly CubeSat Ultraviolet Imager senior project, sponsored by UC Berkeley Space Sciences Laboratories (SSL). SSL wants to monitor the ionosphere above Earth to gain a better understanding of its properties and particle interactions. Far Ultraviolet (FUV) imaging is a good way to obtain high quality images of the ionosphere and the Earth's auroras, and advancement in optic technologies have made cube satellites (CubeSats) an ideal vessel for a FUV imager, as they are relatively low-cost, lightweight, and can be repeatedly deployed. These CubeSat FUV imagers ...


Effect Of Aerogel On The Thermal Performance Of Corrugated Composite Sandwich Structures, Jacob Dillon Chess Dec 2018

Effect Of Aerogel On The Thermal Performance Of Corrugated Composite Sandwich Structures, Jacob Dillon Chess

Master's Theses and Project Reports

Current insulation solutions across multiple industries, especially the commercial sector, can be bulky and ineffective when considering their volume. Aerogels are excellent insulators, exhibiting low thermal conductivities and low densities with a porosity of around 95%. Such characteristics make aerogels effective in decreasing conductive heat transfer within a solid. These requirements are crucial for aerospace and spaceflight applications, where sensitive components exist among extreme temperature environments. When implemented into insulation applications, aerogel can perform better than existing technology while using less material, which limits the amount of volume allocated for insulation. The application of these materials into composites can result ...


Nanosatellite Launch Data-Logger (Sync), Christopher Martin Gerdom Dec 2018

Nanosatellite Launch Data-Logger (Sync), Christopher Martin Gerdom

Master's Theses and Project Reports

CubeSat designers are increasingly looking to incorporate delicate structures and optics into their payloads. These delicate payloads, however, may not survive the required absolute-worst-case launch vibration testing needed for flight certification. To help address this problem, and to better match testing conditions to real-world launch environments, this thesis introduces Sync, a compact 1/4U CubeSat payload designed to collect data on the vibrations and thermal environments CubeSats experience inside a deployer on the way to orbit. This data can be used to better understand the launch environment for different vehicles, and help develop new, more realistic testing guidelines that could ...


Inter-Laminar Fracture Of 3d-Printed Plastics - Development Of Methods, Christopher Stolinski Dec 2018

Inter-Laminar Fracture Of 3d-Printed Plastics - Development Of Methods, Christopher Stolinski

All Graduate Plan B and other Reports

Due to the increased use of 3D printed acrylonitrile butadiene styrene (ABS) plastic parts, a way to quantify the failure energy (energy needed to initiate cracking) is needed. Impact tests at high rates of loading are performed to determine failure energy. Throughout testing, specimens are monitored with high speed cameras to perform camera-based deformation measurements. Data acquisition and processing methods to calculate failure energy using crack opening displacement, and loading rates are developed to enable further use by Dr. Ryan Berke’s lab at Utah State University.


Hybrid Processes In Material Removal Of Hard And Brittle Materials, Hossein Mohammadi Dec 2018

Hybrid Processes In Material Removal Of Hard And Brittle Materials, Hossein Mohammadi

Dissertations

New technologies demand new materials with better mechanical, optical, and thermal properties. Materials that are light weight, strong with high resistance to high temperatures, and compatible with a predetermined condition. Such materials usually are challenging to manufacture and process compared to widely available materials such as metals. Ceramics and semiconductors are considered extremely hard and brittle, making them very difficult to cut and manufacture. The other major and fast-growing type of materials are composites (including Ceramic Matrix Composites, CMC) that are also considered very challenging to machine. All these materials have many applications in major industries (i.e. electronics, aerospace ...


Transient Analysis Of Full Scale And Experimental Downburst Flows, Junayed Chowdhury Nov 2018

Transient Analysis Of Full Scale And Experimental Downburst Flows, Junayed Chowdhury

Electronic Thesis and Dissertation Repository

Downbursts are highly transient natural phenomena which produce strong downdrafts evolving from a cumulonimbus cloud They induce an outburst of damaging winds on or near to the ground causing an immense damage to the ground mounted structures and aircrafts. This study investigates the transient nature of downbursts using wind speed records from full scale downburst events employing an objective methodology. This method can detect the abrupt change points in a downburst time series based on statistical parameters such as mean, standard deviation and linear trend. In addition to the analysis of the full scale downburst events, several large scale experimental ...


Assessing The Limitations Of Effective Number Of Samples For Finding The Uncertainty Of The Mean Of Correlated Data, Barton L. Smith, Douglas R. Neal, Mark Feero, Geordie Richards Nov 2018

Assessing The Limitations Of Effective Number Of Samples For Finding The Uncertainty Of The Mean Of Correlated Data, Barton L. Smith, Douglas R. Neal, Mark Feero, Geordie Richards

Mechanical and Aerospace Engineering Faculty Publications

The efficacy of recent and classical theories on the uncertainty of the mean of correlated data have been investigated. A variety of very large data sets make it possible to show that, under circumstances that are often too expensive to achieve, the integral time scale can be used to determine the effective number of independent samples, and therefore the uncertainty of the mean. To do so, the data set must be sufficiently large that it may be divided into many records, each of which is many integral time scales long. In this circumstance, all lags of the autocorrelation should be ...


Toward Building Resilient, Sustainable, And Smart Infrastructure In The 21st Century, Aly Mousaad Aly Nov 2018

Toward Building Resilient, Sustainable, And Smart Infrastructure In The 21st Century, Aly Mousaad Aly

Faculty Publications

In recent years, as a result of significant climate change, stringent windstorms are becoming more frequent than before. Given the threat that windstorms bring to people and property, wind/structural engineering research is imperative to improve the resilience of existing and new infrastructure, for community safety and assets protection. The Windstorm Impact, Science and Engineering (WISE) research program at Louisiana State University (LSU) focuses on creating new knowledge applicable to the mitigation of existing and new infrastructure, to survive and perform optimally under natural hazards. To achieve our research goals, we address two imperious challenges: (i) characterization of realistic wind ...


Liquid Jet Penetration And Breakup In A Free Supersonic Gas Jet, Hansen Jones Oct 2018

Liquid Jet Penetration And Breakup In A Free Supersonic Gas Jet, Hansen Jones

LSU Master's Theses

In the testing of today’s rocket engines, both on large scale vertical test stands and smaller subscale horizontal component testing stands, it is extremely important to be able to accurately quantify and mitigate the thermal and acoustic loads the engines will generate on test stand infrastructure. Due to the large number of parameters that must be considered for many cases, development of a multi-phase computational code is under way to properly analyze and design water spray cooling systems used at NASA’s Stennis Space Center (SSC) and across other NASA centers. As such, a small-scale experiment has been conducted ...


Computational Aerodynamics And Anatomical Characterization Of Laryngotracheal Stenosis In Children, William Poynot Oct 2018

Computational Aerodynamics And Anatomical Characterization Of Laryngotracheal Stenosis In Children, William Poynot

LSU Master's Theses

Laryngotracheal stenosis (LTS) is a health condition in which an obstruction in the upper trachea can cause breathing difficulties and increased incidence of infection, among other symptoms. Occurring most commonly due to intubation in infants, LTS often requires corrective surgery. Currently, clinical methods of assessing the blockage region are simplistic and subjective, and it is challenging to determine the most effective surgical strategy for any given patient. In the present work, a comprehensive methodology is proposed for characterizing the stenosis region both in terms of its anatomical parameters and its corresponding aerodynamic properties. The combination of computational fluid dynamics (CFD ...


The Subject Librarian Newsletter, Engineering And Computer Science, Spring 2018, Buenaventura "Ven" Basco Oct 2018

The Subject Librarian Newsletter, Engineering And Computer Science, Spring 2018, Buenaventura "Ven" Basco

Buenaventura "Ven" Basco

No abstract provided.


The Subject Librarian Newsletter, Engineering And Computer Science, Fall 2017, Buenaventura "Ven" Basco Oct 2018

The Subject Librarian Newsletter, Engineering And Computer Science, Fall 2017, Buenaventura "Ven" Basco

Buenaventura "Ven" Basco

No abstract provided.


Morphology And Stress Evolution During The Initial Stages Of Intergranular Corrosion Of X70 Steel, Denizhan Yavas, Abdullah Alshehri, Pratyush Mishra, Pranav Shrotriya, Ashraf F. Bastawros, Kurt R. Hebert Sep 2018

Morphology And Stress Evolution During The Initial Stages Of Intergranular Corrosion Of X70 Steel, Denizhan Yavas, Abdullah Alshehri, Pratyush Mishra, Pranav Shrotriya, Ashraf F. Bastawros, Kurt R. Hebert

Aerospace Engineering Publications

Pipeline steels are vulnerable to stress corrosion cracking (SCC) during intergranular corrosion (IGC) at potentials of active dissolution in moderately alkaline carbonate-bicarbonate solutions. Morphology evolution accompanying IGC has not been fully described, despite the relevance of the corrosion geometry to crack initiation. The present article reports a characterization of concurrent morphology and mechanical stress development during the initial stages of IGC of X70 steel in sodium bicarbonate solution, in the potential range of high SCC susceptibility. Morphology was revealed by scanning electron microscope examination of cross sections through the IGC layer, and stress evolution was monitored by curvature interferometry. At ...


Ionic And Electronic Conductivities Of Atomic Layer Deposition Thin Film Coated Lithium Ion Battery Cathode Particles, Rajankumar L. Patel, Jonghyun Park, Xinhua Liang Sep 2018

Ionic And Electronic Conductivities Of Atomic Layer Deposition Thin Film Coated Lithium Ion Battery Cathode Particles, Rajankumar L. Patel, Jonghyun Park, Xinhua Liang

Xinhua Liang

It is imperative to ascertain the ionic and electronic components of the total conductivity of an electrochemically active material. A blocking technique, called the “Hebb-Wagner method”, is normally used to explain the two components (ionic and electronic) of a mixed conductor, in combination with the complex ac impedance method and dc polarization measurements. CeO2 atomic layer deposition (ALD)-coated and uncoated, LiMn2O4 (LMO) and LiMn1.5Ni0.5O4 (LMNO) powders were pressed into pellets and then painted with silver to act as a blocking electrode. The electronic conductivities were derived from the ...


Design Of Selectively Compliant Morphing Wind Turbine Blade Section Using Bistable Laminate For Passive Load Alleviation, Abhishek Chopra, Dr. Andres Arrieta, Janav Udani, Jose Rivas Padilla Aug 2018

Design Of Selectively Compliant Morphing Wind Turbine Blade Section Using Bistable Laminate For Passive Load Alleviation, Abhishek Chopra, Dr. Andres Arrieta, Janav Udani, Jose Rivas Padilla

The Summer Undergraduate Research Fellowship (SURF) Symposium

The design of passively controlled compliant morphing structures for large scale wind turbine blades has been of interest due to the inherent advantages of lower mass and reduced complexity over their active counterparts. Previous studies have indicated that embedding a locally bi-stable element within the turbine blade section successfully allows for achieving passive load alleviation. The embedded bi-stable member switches from one stable state to another at a critical aerodynamic load. This local structural change results in a global shift in the aeroelastic response of the blade section. Building on these preliminary results, this research investigates a two- dimensional wind ...


A Non-Equilibrium Molecular Dynamics Study Of The Effects Of Helium Bubbles On The Thermal Conductivity Of Zrc, Tate Shorthill Aug 2018

A Non-Equilibrium Molecular Dynamics Study Of The Effects Of Helium Bubbles On The Thermal Conductivity Of Zrc, Tate Shorthill

All Graduate Plan B and other Reports

Zirconium carbide (ZrC) has been proposed as a potential improvement to nuclear fuel cladding. As such, it is important to characterize its physical properties, particularly those relating to thermal energy transport. Reactor conditions are known to damage fuel microstructure over time. While research has been conducted on undamaged and damaged ZrC, some areas of interest remain. Fission products, such as helium, can accumulate in pores within the fuel microstructure. Such a case has yet to be characterized in ZrC fuel cladding.

A non-equilibrium molecular dynamics model was developed to characterize the thermal properties of ZrC. Fourier’s Law allows the ...


Design Survey Of Laminated Composite I-Beam, Mrinmoy Saha Aug 2018

Design Survey Of Laminated Composite I-Beam, Mrinmoy Saha

All Graduate Plan B and other Reports

Composite I-beams are popular for high-strength low-weight applications. Learning the macro-mechanics and designing the composite I-beam properly are necessary. In this report, a design overview of the composite I-beam is discussed which is based on classical lamination theory where it includes the homogenization approach, the plane stress assumption and the Kirchhoff hypothesis. Using these assumptions, a method was developed to come up with the effective material properties of a beam. Formulas to calculate maximum deflection and maximum bending stress and shear stress and the stress concentration at the connection of web-flange are discussed which describe ways for designing and manufacturing ...


High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen Aug 2018

High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen

Electronic Theses and Dissertations

Much of what we know about fundamental physical law and the universe derives from observations and measurements using optical methods. The passive use of the electromagnetic spectrum can be the best way of studying physical phenomenon in general with minimal disturbance of the system in the process. While for many applications ambient visible light is sufficient, light outside of the visible range may convey more information. The signals of interest are also often a small fraction of the background, and their changes occur on time scales so quickly that they are visually imperceptible. This thesis reports techniques and technologies developed ...