Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Mechanical Engineering

Liquid-To-Liquid Low Grade Waste Heat Recovery Using A Two-Channel Loop, Waleed Farwana Dec 2018

Liquid-To-Liquid Low Grade Waste Heat Recovery Using A Two-Channel Loop, Waleed Farwana

Masters Theses

The use of thermoelectric generators (TEGs) for producing electric energy from low grade “waste heat” has been theorized to provide a sustainable and low-cost energy source for electric power plants. The purpose of this study is to model and experimentally validate a TEG device that takes advantage of low grade waste heat (approximately 100-150 degrees Celsius) in liquid form in order to generate power that can be used for various applications in the surrounding environment. This research aims to demonstrate that optimized TEG designs bear the potential to compete with other methods of low grade waste heat energy harvesting in …


Optimization Of The Practice Of Slow Cooling Steel Bars: A Redesign And Modernization Of Materials, Eryn Johnston Dec 2018

Optimization Of The Practice Of Slow Cooling Steel Bars: A Redesign And Modernization Of Materials, Eryn Johnston

Mechanical Engineering Undergraduate Honors Theses

Throughout the process of steel making, certain grades of steel are a higher risk for defects caused by the inability to quickly diffuse hydrogen through the steel when cooled to room temperature at a normal rate based on the ambient air temperature. To reduce the hydrogen flaking defects that are caused due to hydrogen entrapment in the steel, the process of slow cooling is utilized. This process reduces the cooling rate of steel bars by keeping them at a higher temperature for extended periods and in turn gives the hydrogen a chance to fully dissipate from the steel. In many …


Selecting The Most Effective Energy Modeling Tool Based On A Project Requirement, Sodiq Akande Aug 2018

Selecting The Most Effective Energy Modeling Tool Based On A Project Requirement, Sodiq Akande

Electronic Theses and Dissertations

Building energy usage can be derived and controlled by performing building energy modeling. BEM can be performed using numerous software tools such as DesignBuilder, OpenStudio, EnergyPlus etc. These modeling tools can be sorted into three different modeling categories: Black-box, Gray-box and White-box. It is important for a modeler to be able to quickly select the proper tool from the proper category to meet the need of the project. To validate the method of categorizing tools, the three models generated using tools from each category and the modeling outputs required were compared. Each model was designed to estimate the amount of …


Investigations Into The Airside Cooling Of A Heat Exchanger, David Vallet Aug 2018

Investigations Into The Airside Cooling Of A Heat Exchanger, David Vallet

UNLV Theses, Dissertations, Professional Papers, and Capstones

In this study we investigate the air-side cooling of a flat-plate fin and tube heat transfer condenser with numerical simulations. A new design is proposed which utilises vortex generators to direct the flow in such a way as to remove some of the stagnant heated air that collects in the wake of the pipes. A comparative study of the proposed design and a standard tube and fin condenser is conducted by varying the air side entrance velocities. The Shear Stress Tension, SST $\kappa - \omega$ 2-equation turbulent model is used to solve the RANS model in ANSYS Fluent 18. The …


Heat Flow Characterization Of Speakers, Sabrina M. Gough, Lydia K. Hedge, Nicolas M. Jones Jun 2018

Heat Flow Characterization Of Speakers, Sabrina M. Gough, Lydia K. Hedge, Nicolas M. Jones

Mechanical Engineering

Statement of Confidentiality: The complete senior project report was submitted to the project advisor and sponsor. The results of this project are of a confidential nature and will not be published at this time.


Bubble Nucleation In Superhydrophobic Microchannels Due To Subcritical Heating, Adam Cowley, Daniel Maynes, Julie Crockett, Brian D. Iverson Jun 2018

Bubble Nucleation In Superhydrophobic Microchannels Due To Subcritical Heating, Adam Cowley, Daniel Maynes, Julie Crockett, Brian D. Iverson

Faculty Publications

This work experimentally studies the effects of single wall heating on laminar flow in a high-aspect ratio superhydrophobic microchannel. When water that is saturated with air is used as the working liquid, the non-wetted cavities on the superhydrophobic surfaces act as nucleation sites and allow air to effervesce out of the water and onto the surface when heated. Previous works in the literature have only considered the opposite case where the water is undersaturated and absorbs air out the cavities for a microchannel setting. The microchannel considered in this work consists of a rib/cavity structured superhydrophobic surface and a glass …


Numerical Simulation Of Heat Transfer And Chemistry In The Wake Behind A Hypersonic Slender Body At Angle Of Attack, Matthew J. Satchell, Jeffrey M. Layng, Robert B. Greendyke Mar 2018

Numerical Simulation Of Heat Transfer And Chemistry In The Wake Behind A Hypersonic Slender Body At Angle Of Attack, Matthew J. Satchell, Jeffrey M. Layng, Robert B. Greendyke

Faculty Publications

The effect of thermal and chemical boundary conditions on the structure and chemical composition of the wake behind a 3D Mach 7 sphere-cone at an angle of attack of 5 degrees and an altitude of roughly 30,000 m is explored. A special emphasis is placed on determining the number density of chemical species which might lead to detection via the electromagnetic spectrum. The use of non-ablating cold-wall, adiabatic, and radiative equilibrium wall boundary conditions are used to simulate extremes in potential thermal protection system designs. Non-ablating, as well as an ablating boundary condition using the “steady-state ablation” assumption to compute …


Optimization Of Heat Sinks In A Range Of Configurations., Archibald Allswell Amoako Jan 2018

Optimization Of Heat Sinks In A Range Of Configurations., Archibald Allswell Amoako

Electronic Theses and Dissertations

In this study, different heatsink geometries used for electronic cooling are studied and compared to each other to determine the most efficient. The goal is to optimize heat transfer of the heat sinks studied in a range of configuration based on fin geometry. Heat sinks are thermal conductive material devices designed to absorb and disperse heat from high-temperature objects (e.g. Computer CPU). Common materials used in the manufacturing of heat sinks are aluminum and copper due to their relatively high thermal conductivity and lightweight [1]. Aluminum is used as the material for the heatsinks studied in this research project. To …


Development And Thermal Management Of A Dynamically Efficient, Transient High Energy Pulse System Model, Nathaniel J. Butt Jan 2018

Development And Thermal Management Of A Dynamically Efficient, Transient High Energy Pulse System Model, Nathaniel J. Butt

Browse all Theses and Dissertations

As technology advances, the abilities of civilian and military vehicles, both air and ground, will undoubtedly increase as well. One of the main areas of improvement is in the electronics area. The new electronics are ever smaller, use ever higher amounts of electrical power, and require ever smaller temperature tolerances. This leads to the problem of effectively managing the increasing thermal loads and temperature tolerances on these systems. One electronic system that causes concern is a high energy pulse system (HEPS). These devices have very high thermal loads (100s of kW). On an air vehicle, where thermal management by legacy …